|
|
|
|
/**
|
|
|
|
|
* File: knapsack.cs
|
|
|
|
|
* Created Time: 2023-07-07
|
|
|
|
|
* Author: hpstory (hpstory1024@163.com)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
namespace hello_algo.chapter_dynamic_programming;
|
|
|
|
|
|
|
|
|
|
public class knapsack {
|
|
|
|
|
/* 0-1 背包:暴力搜索 */
|
|
|
|
|
int KnapsackDFS(int[] weight, int[] val, int i, int c) {
|
|
|
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
|
|
|
|
if (i == 0 || c == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
// 若超过背包容量,则只能选择不放入背包
|
|
|
|
|
if (weight[i - 1] > c) {
|
|
|
|
|
return KnapsackDFS(weight, val, i - 1, c);
|
|
|
|
|
}
|
|
|
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
|
|
|
int no = KnapsackDFS(weight, val, i - 1, c);
|
|
|
|
|
int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];
|
|
|
|
|
// 返回两种方案中价值更大的那一个
|
|
|
|
|
return Math.Max(no, yes);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 0-1 背包:记忆化搜索 */
|
|
|
|
|
int KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {
|
|
|
|
|
// 若已选完所有物品或背包无剩余容量,则返回价值 0
|
|
|
|
|
if (i == 0 || c == 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if (mem[i][c] != -1) {
|
|
|
|
|
return mem[i][c];
|
|
|
|
|
}
|
|
|
|
|
// 若超过背包容量,则只能选择不放入背包
|
|
|
|
|
if (weight[i - 1] > c) {
|
|
|
|
|
return KnapsackDFSMem(weight, val, mem, i - 1, c);
|
|
|
|
|
}
|
|
|
|
|
// 计算不放入和放入物品 i 的最大价值
|
|
|
|
|
int no = KnapsackDFSMem(weight, val, mem, i - 1, c);
|
|
|
|
|
int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];
|
|
|
|
|
// 记录并返回两种方案中价值更大的那一个
|
|
|
|
|
mem[i][c] = Math.Max(no, yes);
|
|
|
|
|
return mem[i][c];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 0-1 背包:动态规划 */
|
|
|
|
|
int KnapsackDP(int[] weight, int[] val, int cap) {
|
|
|
|
|
int n = weight.Length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
int[,] dp = new int[n + 1, cap + 1];
|
|
|
|
|
// 状态转移
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
for (int c = 1; c <= cap; c++) {
|
|
|
|
|
if (weight[i - 1] > c) {
|
|
|
|
|
// 若超过背包容量,则不选物品 i
|
|
|
|
|
dp[i, c] = dp[i - 1, c];
|
|
|
|
|
} else {
|
|
|
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
|
|
|
dp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n, cap];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 0-1 背包:空间优化后的动态规划 */
|
|
|
|
|
int KnapsackDPComp(int[] weight, int[] val, int cap) {
|
|
|
|
|
int n = weight.Length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
int[] dp = new int[cap + 1];
|
|
|
|
|
// 状态转移
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
|
// 倒序遍历
|
|
|
|
|
for (int c = cap; c > 0; c--) {
|
|
|
|
|
if (weight[i - 1] > c) {
|
|
|
|
|
// 若超过背包容量,则不选物品 i
|
|
|
|
|
dp[c] = dp[c];
|
|
|
|
|
} else {
|
|
|
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
|
|
|
dp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[cap];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
[Test]
|
|
|
|
|
public void Test() {
|
|
|
|
|
int[] weight = [10, 20, 30, 40, 50];
|
|
|
|
|
int[] val = [50, 120, 150, 210, 240];
|
|
|
|
|
int cap = 50;
|
|
|
|
|
int n = weight.Length;
|
|
|
|
|
|
|
|
|
|
// 暴力搜索
|
|
|
|
|
int res = KnapsackDFS(weight, val, n, cap);
|
|
|
|
|
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
|
|
|
|
|
|
|
|
|
|
// 记忆化搜索
|
|
|
|
|
int[][] mem = new int[n + 1][];
|
|
|
|
|
for (int i = 0; i <= n; i++) {
|
|
|
|
|
mem[i] = new int[cap + 1];
|
|
|
|
|
Array.Fill(mem[i], -1);
|
|
|
|
|
}
|
|
|
|
|
res = KnapsackDFSMem(weight, val, mem, n, cap);
|
|
|
|
|
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
|
|
|
|
|
|
|
|
|
|
// 动态规划
|
|
|
|
|
res = KnapsackDP(weight, val, cap);
|
|
|
|
|
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
|
|
|
|
|
|
|
|
|
|
// 空间优化后的动态规划
|
|
|
|
|
res = KnapsackDPComp(weight, val, cap);
|
|
|
|
|
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
|
|
|
|
|
}
|
|
|
|
|
}
|