|
|
|
/**
|
|
|
|
* File: unbounded_knapsack.java
|
|
|
|
* Created Time: 2023-07-11
|
|
|
|
* Author: krahets (krahets@163.com)
|
|
|
|
*/
|
|
|
|
|
|
|
|
package chapter_dynamic_programming;
|
|
|
|
|
|
|
|
public class unbounded_knapsack {
|
|
|
|
/* 完全背包:动态规划 */
|
|
|
|
static int unboundedKnapsackDP(int[] wgt, int[] val, int cap) {
|
|
|
|
int n = wgt.length;
|
|
|
|
// 初始化 dp 表
|
|
|
|
int[][] dp = new int[n + 1][cap + 1];
|
|
|
|
// 状态转移
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
for (int c = 1; c <= cap; c++) {
|
|
|
|
if (wgt[i - 1] > c) {
|
|
|
|
// 若超过背包容量,则不选物品 i
|
|
|
|
dp[i][c] = dp[i - 1][c];
|
|
|
|
} else {
|
|
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
|
|
dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return dp[n][cap];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 完全背包:空间优化后的动态规划 */
|
|
|
|
static int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
|
|
|
|
int n = wgt.length;
|
|
|
|
// 初始化 dp 表
|
|
|
|
int[] dp = new int[cap + 1];
|
|
|
|
// 状态转移
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
for (int c = 1; c <= cap; c++) {
|
|
|
|
if (wgt[i - 1] > c) {
|
|
|
|
// 若超过背包容量,则不选物品 i
|
|
|
|
dp[c] = dp[c];
|
|
|
|
} else {
|
|
|
|
// 不选和选物品 i 这两种方案的较大值
|
|
|
|
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return dp[cap];
|
|
|
|
}
|
|
|
|
|
|
|
|
public static void main(String[] args) {
|
|
|
|
int[] wgt = { 1, 2, 3 };
|
|
|
|
int[] val = { 5, 11, 15 };
|
|
|
|
int cap = 4;
|
|
|
|
|
|
|
|
// 动态规划
|
|
|
|
int res = unboundedKnapsackDP(wgt, val, cap);
|
|
|
|
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
|
|
|
|
|
|
|
// 空间优化后的动态规划
|
|
|
|
res = unboundedKnapsackDPComp(wgt, val, cap);
|
|
|
|
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
|
|
|
}
|
|
|
|
}
|