|
|
|
|
=begin
|
|
|
|
|
File: n_queens.rb
|
|
|
|
|
Created Time: 2024-05-21
|
|
|
|
|
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
|
|
|
|
=end
|
|
|
|
|
|
|
|
|
|
### 回溯算法:n 皇后 ###
|
|
|
|
|
def backtrack(row, n, state, res, cols, diags1, diags2)
|
|
|
|
|
# 当放置完所有行时,记录解
|
|
|
|
|
if row == n
|
|
|
|
|
res << state.map { |row| row.dup }
|
|
|
|
|
return
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# 遍历所有列
|
|
|
|
|
for col in 0...n
|
|
|
|
|
# 计算该格子对应的主对角线和次对角线
|
|
|
|
|
diag1 = row - col + n - 1
|
|
|
|
|
diag2 = row + col
|
|
|
|
|
# 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后
|
|
|
|
|
if !cols[col] && !diags1[diag1] && !diags2[diag2]
|
|
|
|
|
# 尝试:将皇后放置在该格子
|
|
|
|
|
state[row][col] = "Q"
|
|
|
|
|
cols[col] = diags1[diag1] = diags2[diag2] = true
|
|
|
|
|
# 放置下一行
|
|
|
|
|
backtrack(row + 1, n, state, res, cols, diags1, diags2)
|
|
|
|
|
# 回退:将该格子恢复为空位
|
|
|
|
|
state[row][col] = "#"
|
|
|
|
|
cols[col] = diags1[diag1] = diags2[diag2] = false
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
### 求解 n 皇后 ###
|
|
|
|
|
def n_queens(n)
|
|
|
|
|
# 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
|
|
|
|
|
state = Array.new(n) { Array.new(n, "#") }
|
|
|
|
|
cols = Array.new(n, false) # 记录列是否有皇后
|
|
|
|
|
diags1 = Array.new(2 * n - 1, false) # 记录主对角线上是否有皇后
|
|
|
|
|
diags2 = Array.new(2 * n - 1, false) # 记录次对角线上是否有皇后
|
|
|
|
|
res = []
|
|
|
|
|
backtrack(0, n, state, res, cols, diags1, diags2)
|
|
|
|
|
|
|
|
|
|
res
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
### Driver Code ###
|
|
|
|
|
if __FILE__ == $0
|
|
|
|
|
n = 4
|
|
|
|
|
res = n_queens(n)
|
|
|
|
|
|
|
|
|
|
puts "输入棋盘长宽为 #{n}"
|
|
|
|
|
puts "皇后放置方案共有 #{res.length} 种"
|
|
|
|
|
|
|
|
|
|
for state in res
|
|
|
|
|
puts "--------------------"
|
|
|
|
|
for row in state
|
|
|
|
|
p row
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
end
|