You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
2.9 KiB
100 lines
2.9 KiB
6 months ago
|
=begin
|
||
|
File: knapsack.rb
|
||
|
Created Time: 2024-05-29
|
||
|
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
||
|
=end
|
||
|
|
||
|
### 0-1 背包:暴力搜索 ###
|
||
|
def knapsack_dfs(wgt, val, i, c)
|
||
|
# 若已选完所有物品或背包无剩余容量,则返回价值 0
|
||
|
return 0 if i == 0 || c == 0
|
||
|
# 若超过背包容量,则只能选择不放入背包
|
||
|
return knapsack_dfs(wgt, val, i - 1, c) if wgt[i - 1] > c
|
||
|
# 计算不放入和放入物品 i 的最大价值
|
||
|
no = knapsack_dfs(wgt, val, i - 1, c)
|
||
|
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||
|
# 返回两种方案中价值更大的那一个
|
||
|
[no, yes].max
|
||
|
end
|
||
|
|
||
|
### 0-1 背包:记忆化搜索 ###
|
||
|
def knapsack_dfs_mem(wgt, val, mem, i, c)
|
||
|
# 若已选完所有物品或背包无剩余容量,则返回价值 0
|
||
|
return 0 if i == 0 || c == 0
|
||
|
# 若已有记录,则直接返回
|
||
|
return mem[i][c] if mem[i][c] != -1
|
||
|
# 若超过背包容量,则只能选择不放入背包
|
||
|
return knapsack_dfs_mem(wgt, val, mem, i - 1, c) if wgt[i - 1] > c
|
||
|
# 计算不放入和放入物品 i 的最大价值
|
||
|
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
|
||
|
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||
|
# 记录并返回两种方案中价值更大的那一个
|
||
|
mem[i][c] = [no, yes].max
|
||
|
end
|
||
|
|
||
|
### 0-1 背包:动态规划 ###
|
||
|
def knapsack_dp(wgt, val, cap)
|
||
|
n = wgt.length
|
||
|
# 初始化 dp 表
|
||
|
dp = Array.new(n + 1) { Array.new(cap + 1, 0) }
|
||
|
# 状态转移
|
||
|
for i in 1...(n + 1)
|
||
|
for c in 1...(cap + 1)
|
||
|
if wgt[i - 1] > c
|
||
|
# 若超过背包容量,则不选物品 i
|
||
|
dp[i][c] = dp[i - 1][c]
|
||
|
else
|
||
|
# 不选和选物品 i 这两种方案的较大值
|
||
|
dp[i][c] = [dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]].max
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
dp[n][cap]
|
||
|
end
|
||
|
|
||
|
### 0-1 背包:空间优化后的动态规划 ###
|
||
|
def knapsack_dp_comp(wgt, val, cap)
|
||
|
n = wgt.length
|
||
|
# 初始化 dp 表
|
||
|
dp = Array.new(cap + 1, 0)
|
||
|
# 状态转移
|
||
|
for i in 1...(n + 1)
|
||
|
# 倒序遍历
|
||
|
for c in cap.downto(1)
|
||
|
if wgt[i - 1] > c
|
||
|
# 若超过背包容量,则不选物品 i
|
||
|
dp[c] = dp[c]
|
||
|
else
|
||
|
# 不选和选物品 i 这两种方案的较大值
|
||
|
dp[c] = [dp[c], dp[c - wgt[i - 1]] + val[i - 1]].max
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
dp[cap]
|
||
|
end
|
||
|
|
||
|
### Driver Code ###
|
||
|
if __FILE__ == $0
|
||
|
wgt = [10, 20, 30, 40, 50]
|
||
|
val = [50, 120, 150, 210, 240]
|
||
|
cap = 50
|
||
|
n = wgt.length
|
||
|
|
||
|
# 暴力搜索
|
||
|
res = knapsack_dfs(wgt, val, n, cap)
|
||
|
puts "不超过背包容量的最大物品价值为 #{res}"
|
||
|
|
||
|
# 记忆化搜索
|
||
|
mem = Array.new(n + 1) { Array.new(cap + 1, -1) }
|
||
|
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
|
||
|
puts "不超过背包容量的最大物品价值为 #{res}"
|
||
|
|
||
|
# 动态规划
|
||
|
res = knapsack_dp(wgt, val, cap)
|
||
|
puts "不超过背包容量的最大物品价值为 #{res}"
|
||
|
|
||
|
# 空间优化后的动态规划
|
||
|
res = knapsack_dp_comp(wgt, val, cap)
|
||
|
puts "不超过背包容量的最大物品价值为 #{res}"
|
||
|
end
|