|
|
|
|
# 二叉搜索树
|
|
|
|
|
|
|
|
|
|
如下图所示,<u>二叉搜索树(binary search tree)</u>满足以下条件。
|
|
|
|
|
|
|
|
|
|
1. 对于根节点,左子树中所有节点的值 $<$ 根节点的值 $<$ 右子树中所有节点的值。
|
|
|
|
|
2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 `1.` 。
|
|
|
|
|
|
|
|
|
|
![二叉搜索树](binary_search_tree.assets/binary_search_tree.png)
|
|
|
|
|
|
|
|
|
|
## 二叉搜索树的操作
|
|
|
|
|
|
|
|
|
|
我们将二叉搜索树封装为一个类 `BinarySearchTree` ,并声明一个成员变量 `root` ,指向树的根节点。
|
|
|
|
|
|
|
|
|
|
### 查找节点
|
|
|
|
|
|
|
|
|
|
给定目标节点值 `num` ,可以根据二叉搜索树的性质来查找。如下图所示,我们声明一个节点 `cur` ,从二叉树的根节点 `root` 出发,循环比较节点值 `cur.val` 和 `num` 之间的大小关系。
|
|
|
|
|
|
|
|
|
|
- 若 `cur.val < num` ,说明目标节点在 `cur` 的右子树中,因此执行 `cur = cur.right` 。
|
|
|
|
|
- 若 `cur.val > num` ,说明目标节点在 `cur` 的左子树中,因此执行 `cur = cur.left` 。
|
|
|
|
|
- 若 `cur.val = num` ,说明找到目标节点,跳出循环并返回该节点。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![二叉搜索树查找节点示例](binary_search_tree.assets/bst_search_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![bst_search_step2](binary_search_tree.assets/bst_search_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![bst_search_step3](binary_search_tree.assets/bst_search_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![bst_search_step4](binary_search_tree.assets/bst_search_step4.png)
|
|
|
|
|
|
|
|
|
|
二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 $O(\log n)$ 时间。示例代码如下:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{binary_search_tree}-[class]{binary_search_tree}-[func]{search}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 插入节点
|
|
|
|
|
|
|
|
|
|
给定一个待插入元素 `num` ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作流程如下图所示。
|
|
|
|
|
|
|
|
|
|
1. **查找插入位置**:与查找操作相似,从根节点出发,根据当前节点值和 `num` 的大小关系循环向下搜索,直到越过叶节点(遍历至 `None` )时跳出循环。
|
|
|
|
|
2. **在该位置插入节点**:初始化节点 `num` ,将该节点置于 `None` 的位置。
|
|
|
|
|
|
|
|
|
|
![在二叉搜索树中插入节点](binary_search_tree.assets/bst_insert.png)
|
|
|
|
|
|
|
|
|
|
在代码实现中,需要注意以下两点。
|
|
|
|
|
|
|
|
|
|
- 二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。
|
|
|
|
|
- 为了实现插入节点,我们需要借助节点 `pre` 保存上一轮循环的节点。这样在遍历至 `None` 时,我们可以获取到其父节点,从而完成节点插入操作。
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{binary_search_tree}-[class]{binary_search_tree}-[func]{insert}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
与查找节点相同,插入节点使用 $O(\log n)$ 时间。
|
|
|
|
|
|
|
|
|
|
### 删除节点
|
|
|
|
|
|
|
|
|
|
先在二叉树中查找到目标节点,再将其删除。与插入节点类似,我们需要保证在删除操作完成后,二叉搜索树的“左子树 < 根节点 < 右子树”的性质仍然满足。因此,我们根据目标节点的子节点数量,分 0、1 和 2 三种情况,执行对应的删除节点操作。
|
|
|
|
|
|
|
|
|
|
如下图所示,当待删除节点的度为 $0$ 时,表示该节点是叶节点,可以直接删除。
|
|
|
|
|
|
|
|
|
|
![在二叉搜索树中删除节点(度为 0 )](binary_search_tree.assets/bst_remove_case1.png)
|
|
|
|
|
|
|
|
|
|
如下图所示,当待删除节点的度为 $1$ 时,将待删除节点替换为其子节点即可。
|
|
|
|
|
|
|
|
|
|
![在二叉搜索树中删除节点(度为 1 )](binary_search_tree.assets/bst_remove_case2.png)
|
|
|
|
|
|
|
|
|
|
当待删除节点的度为 $2$ 时,我们无法直接删除它,而需要使用一个节点替换该节点。由于要保持二叉搜索树“左子树 $<$ 根节点 $<$ 右子树”的性质,**因此这个节点可以是右子树的最小节点或左子树的最大节点**。
|
|
|
|
|
|
|
|
|
|
假设我们选择右子树的最小节点(中序遍历的下一个节点),则删除操作流程如下图所示。
|
|
|
|
|
|
|
|
|
|
1. 找到待删除节点在“中序遍历序列”中的下一个节点,记为 `tmp` 。
|
|
|
|
|
2. 用 `tmp` 的值覆盖待删除节点的值,并在树中递归删除节点 `tmp` 。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![在二叉搜索树中删除节点(度为 2 )](binary_search_tree.assets/bst_remove_case3_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![bst_remove_case3_step2](binary_search_tree.assets/bst_remove_case3_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![bst_remove_case3_step3](binary_search_tree.assets/bst_remove_case3_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![bst_remove_case3_step4](binary_search_tree.assets/bst_remove_case3_step4.png)
|
|
|
|
|
|
|
|
|
|
删除节点操作同样使用 $O(\log n)$ 时间,其中查找待删除节点需要 $O(\log n)$ 时间,获取中序遍历后继节点需要 $O(\log n)$ 时间。示例代码如下:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{binary_search_tree}-[class]{binary_search_tree}-[func]{remove}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 中序遍历有序
|
|
|
|
|
|
|
|
|
|
如下图所示,二叉树的中序遍历遵循“左 $\rightarrow$ 根 $\rightarrow$ 右”的遍历顺序,而二叉搜索树满足“左子节点 $<$ 根节点 $<$ 右子节点”的大小关系。
|
|
|
|
|
|
|
|
|
|
这意味着在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:**二叉搜索树的中序遍历序列是升序的**。
|
|
|
|
|
|
|
|
|
|
利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 $O(n)$ 时间,无须进行额外的排序操作,非常高效。
|
|
|
|
|
|
|
|
|
|
![二叉搜索树的中序遍历序列](binary_search_tree.assets/bst_inorder_traversal.png)
|
|
|
|
|
|
|
|
|
|
## 二叉搜索树的效率
|
|
|
|
|
|
|
|
|
|
给定一组数据,我们考虑使用数组或二叉搜索树存储。观察下表,二叉搜索树的各项操作的时间复杂度都是对数阶,具有稳定且高效的性能。只有在高频添加、低频查找删除数据的场景下,数组比二叉搜索树的效率更高。
|
|
|
|
|
|
|
|
|
|
<p align="center"> 表 <id> 数组与搜索树的效率对比 </p>
|
|
|
|
|
|
|
|
|
|
| | 无序数组 | 二叉搜索树 |
|
|
|
|
|
| -------- | -------- | ----------- |
|
|
|
|
|
| 查找元素 | $O(n)$ | $O(\log n)$ |
|
|
|
|
|
| 插入元素 | $O(1)$ | $O(\log n)$ |
|
|
|
|
|
| 删除元素 | $O(n)$ | $O(\log n)$ |
|
|
|
|
|
|
|
|
|
|
在理想情况下,二叉搜索树是“平衡”的,这样就可以在 $\log n$ 轮循环内查找任意节点。
|
|
|
|
|
|
|
|
|
|
然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为下图所示的链表,这时各种操作的时间复杂度也会退化为 $O(n)$ 。
|
|
|
|
|
|
|
|
|
|
![二叉搜索树退化](binary_search_tree.assets/bst_degradation.png)
|
|
|
|
|
|
|
|
|
|
## 二叉搜索树常见应用
|
|
|
|
|
|
|
|
|
|
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
|
|
|
|
|
- 作为某些搜索算法的底层数据结构。
|
|
|
|
|
- 用于存储数据流,以保持其有序状态。
|