|
|
|
|
/**
|
|
|
|
|
* File: time_complexity.cs
|
|
|
|
|
* Created Time: 2022-12-23
|
|
|
|
|
* Author: haptear (haptear@hotmail.com)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
namespace hello_algo.chapter_computational_complexity;
|
|
|
|
|
|
|
|
|
|
public class time_complexity {
|
|
|
|
|
void Algorithm(int n) {
|
|
|
|
|
int a = 1; // +0(技巧 1)
|
|
|
|
|
a += n; // +0(技巧 1)
|
|
|
|
|
// +n(技巧 2)
|
|
|
|
|
for (int i = 0; i < 5 * n + 1; i++) {
|
|
|
|
|
Console.WriteLine(0);
|
|
|
|
|
}
|
|
|
|
|
// +n*n(技巧 3)
|
|
|
|
|
for (int i = 0; i < 2 * n; i++) {
|
|
|
|
|
for (int j = 0; j < n + 1; j++) {
|
|
|
|
|
Console.WriteLine(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 演算法 A 時間複雜度:常數階
|
|
|
|
|
void AlgorithmA(int n) {
|
|
|
|
|
Console.WriteLine(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 演算法 B 時間複雜度:線性階
|
|
|
|
|
void AlgorithmB(int n) {
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
Console.WriteLine(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 演算法 C 時間複雜度:常數階
|
|
|
|
|
void AlgorithmC(int n) {
|
|
|
|
|
for (int i = 0; i < 1000000; i++) {
|
|
|
|
|
Console.WriteLine(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 常數階 */
|
|
|
|
|
int Constant(int n) {
|
|
|
|
|
int count = 0;
|
|
|
|
|
int size = 100000;
|
|
|
|
|
for (int i = 0; i < size; i++)
|
|
|
|
|
count++;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 線性階 */
|
|
|
|
|
int Linear(int n) {
|
|
|
|
|
int count = 0;
|
|
|
|
|
for (int i = 0; i < n; i++)
|
|
|
|
|
count++;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 線性階(走訪陣列) */
|
|
|
|
|
int ArrayTraversal(int[] nums) {
|
|
|
|
|
int count = 0;
|
|
|
|
|
// 迴圈次數與陣列長度成正比
|
|
|
|
|
foreach (int num in nums) {
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 平方階 */
|
|
|
|
|
int Quadratic(int n) {
|
|
|
|
|
int count = 0;
|
|
|
|
|
// 迴圈次數與資料大小 n 成平方關係
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 平方階(泡沫排序) */
|
|
|
|
|
int BubbleSort(int[] nums) {
|
|
|
|
|
int count = 0; // 計數器
|
|
|
|
|
// 外迴圈:未排序區間為 [0, i]
|
|
|
|
|
for (int i = nums.Length - 1; i > 0; i--) {
|
|
|
|
|
// 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
|
|
|
|
|
for (int j = 0; j < i; j++) {
|
|
|
|
|
if (nums[j] > nums[j + 1]) {
|
|
|
|
|
// 交換 nums[j] 與 nums[j + 1]
|
|
|
|
|
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
|
|
|
|
|
count += 3; // 元素交換包含 3 個單元操作
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 指數階(迴圈實現) */
|
|
|
|
|
int Exponential(int n) {
|
|
|
|
|
int count = 0, bas = 1;
|
|
|
|
|
// 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
for (int j = 0; j < bas; j++) {
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
bas *= 2;
|
|
|
|
|
}
|
|
|
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 指數階(遞迴實現) */
|
|
|
|
|
int ExpRecur(int n) {
|
|
|
|
|
if (n == 1) return 1;
|
|
|
|
|
return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 對數階(迴圈實現) */
|
|
|
|
|
int Logarithmic(int n) {
|
|
|
|
|
int count = 0;
|
|
|
|
|
while (n > 1) {
|
|
|
|
|
n /= 2;
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 對數階(遞迴實現) */
|
|
|
|
|
int LogRecur(int n) {
|
|
|
|
|
if (n <= 1) return 0;
|
|
|
|
|
return LogRecur(n / 2) + 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 線性對數階 */
|
|
|
|
|
int LinearLogRecur(int n) {
|
|
|
|
|
if (n <= 1) return 1;
|
|
|
|
|
int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 階乘階(遞迴實現) */
|
|
|
|
|
int FactorialRecur(int n) {
|
|
|
|
|
if (n == 0) return 1;
|
|
|
|
|
int count = 0;
|
|
|
|
|
// 從 1 個分裂出 n 個
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
count += FactorialRecur(n - 1);
|
|
|
|
|
}
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
[Test]
|
|
|
|
|
public void Test() {
|
|
|
|
|
// 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
|
|
|
|
|
int n = 8;
|
|
|
|
|
Console.WriteLine("輸入資料大小 n = " + n);
|
|
|
|
|
|
|
|
|
|
int count = Constant(n);
|
|
|
|
|
Console.WriteLine("常數階的操作數量 = " + count);
|
|
|
|
|
|
|
|
|
|
count = Linear(n);
|
|
|
|
|
Console.WriteLine("線性階的操作數量 = " + count);
|
|
|
|
|
count = ArrayTraversal(new int[n]);
|
|
|
|
|
Console.WriteLine("線性階(走訪陣列)的操作數量 = " + count);
|
|
|
|
|
|
|
|
|
|
count = Quadratic(n);
|
|
|
|
|
Console.WriteLine("平方階的操作數量 = " + count);
|
|
|
|
|
int[] nums = new int[n];
|
|
|
|
|
for (int i = 0; i < n; i++)
|
|
|
|
|
nums[i] = n - i; // [n,n-1,...,2,1]
|
|
|
|
|
count = BubbleSort(nums);
|
|
|
|
|
Console.WriteLine("平方階(泡沫排序)的操作數量 = " + count);
|
|
|
|
|
|
|
|
|
|
count = Exponential(n);
|
|
|
|
|
Console.WriteLine("指數階(迴圈實現)的操作數量 = " + count);
|
|
|
|
|
count = ExpRecur(n);
|
|
|
|
|
Console.WriteLine("指數階(遞迴實現)的操作數量 = " + count);
|
|
|
|
|
|
|
|
|
|
count = Logarithmic(n);
|
|
|
|
|
Console.WriteLine("對數階(迴圈實現)的操作數量 = " + count);
|
|
|
|
|
count = LogRecur(n);
|
|
|
|
|
Console.WriteLine("對數階(遞迴實現)的操作數量 = " + count);
|
|
|
|
|
|
|
|
|
|
count = LinearLogRecur(n);
|
|
|
|
|
Console.WriteLine("線性對數階(遞迴實現)的操作數量 = " + count);
|
|
|
|
|
|
|
|
|
|
count = FactorialRecur(n);
|
|
|
|
|
Console.WriteLine("階乘階(遞迴實現)的操作數量 = " + count);
|
|
|
|
|
}
|
|
|
|
|
}
|