You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
3.9 KiB
154 lines
3.9 KiB
8 months ago
|
/**
|
||
|
* File: binary_search_tree.dart
|
||
|
* Created Time: 2023-04-04
|
||
|
* Author: liuyuxin (gvenusleo@gmail.com)
|
||
|
*/
|
||
|
|
||
|
import '../utils/print_util.dart';
|
||
|
import '../utils/tree_node.dart';
|
||
|
|
||
|
/* 二元搜尋樹 */
|
||
|
class BinarySearchTree {
|
||
|
late TreeNode? _root;
|
||
|
|
||
|
/* 建構子 */
|
||
|
BinarySearchTree() {
|
||
|
// 初始化空樹
|
||
|
_root = null;
|
||
|
}
|
||
|
|
||
|
/* 獲取二元樹的根節點 */
|
||
|
TreeNode? getRoot() {
|
||
|
return _root;
|
||
|
}
|
||
|
|
||
|
/* 查詢節點 */
|
||
|
TreeNode? search(int _num) {
|
||
|
TreeNode? cur = _root;
|
||
|
// 迴圈查詢,越過葉節點後跳出
|
||
|
while (cur != null) {
|
||
|
// 目標節點在 cur 的右子樹中
|
||
|
if (cur.val < _num)
|
||
|
cur = cur.right;
|
||
|
// 目標節點在 cur 的左子樹中
|
||
|
else if (cur.val > _num)
|
||
|
cur = cur.left;
|
||
|
// 找到目標節點,跳出迴圈
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
// 返回目標節點
|
||
|
return cur;
|
||
|
}
|
||
|
|
||
|
/* 插入節點 */
|
||
|
void insert(int _num) {
|
||
|
// 若樹為空,則初始化根節點
|
||
|
if (_root == null) {
|
||
|
_root = TreeNode(_num);
|
||
|
return;
|
||
|
}
|
||
|
TreeNode? cur = _root;
|
||
|
TreeNode? pre = null;
|
||
|
// 迴圈查詢,越過葉節點後跳出
|
||
|
while (cur != null) {
|
||
|
// 找到重複節點,直接返回
|
||
|
if (cur.val == _num) return;
|
||
|
pre = cur;
|
||
|
// 插入位置在 cur 的右子樹中
|
||
|
if (cur.val < _num)
|
||
|
cur = cur.right;
|
||
|
// 插入位置在 cur 的左子樹中
|
||
|
else
|
||
|
cur = cur.left;
|
||
|
}
|
||
|
// 插入節點
|
||
|
TreeNode? node = TreeNode(_num);
|
||
|
if (pre!.val < _num)
|
||
|
pre.right = node;
|
||
|
else
|
||
|
pre.left = node;
|
||
|
}
|
||
|
|
||
|
/* 刪除節點 */
|
||
|
void remove(int _num) {
|
||
|
// 若樹為空,直接提前返回
|
||
|
if (_root == null) return;
|
||
|
TreeNode? cur = _root;
|
||
|
TreeNode? pre = null;
|
||
|
// 迴圈查詢,越過葉節點後跳出
|
||
|
while (cur != null) {
|
||
|
// 找到待刪除節點,跳出迴圈
|
||
|
if (cur.val == _num) break;
|
||
|
pre = cur;
|
||
|
// 待刪除節點在 cur 的右子樹中
|
||
|
if (cur.val < _num)
|
||
|
cur = cur.right;
|
||
|
// 待刪除節點在 cur 的左子樹中
|
||
|
else
|
||
|
cur = cur.left;
|
||
|
}
|
||
|
// 若無待刪除節點,直接返回
|
||
|
if (cur == null) return;
|
||
|
// 子節點數量 = 0 or 1
|
||
|
if (cur.left == null || cur.right == null) {
|
||
|
// 當子節點數量 = 0 / 1 時, child = null / 該子節點
|
||
|
TreeNode? child = cur.left ?? cur.right;
|
||
|
// 刪除節點 cur
|
||
|
if (cur != _root) {
|
||
|
if (pre!.left == cur)
|
||
|
pre.left = child;
|
||
|
else
|
||
|
pre.right = child;
|
||
|
} else {
|
||
|
// 若刪除節點為根節點,則重新指定根節點
|
||
|
_root = child;
|
||
|
}
|
||
|
} else {
|
||
|
// 子節點數量 = 2
|
||
|
// 獲取中序走訪中 cur 的下一個節點
|
||
|
TreeNode? tmp = cur.right;
|
||
|
while (tmp!.left != null) {
|
||
|
tmp = tmp.left;
|
||
|
}
|
||
|
// 遞迴刪除節點 tmp
|
||
|
remove(tmp.val);
|
||
|
// 用 tmp 覆蓋 cur
|
||
|
cur.val = tmp.val;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Driver Code */
|
||
|
void main() {
|
||
|
/* 初始化二元搜尋樹 */
|
||
|
BinarySearchTree bst = BinarySearchTree();
|
||
|
// 請注意,不同的插入順序會生成不同的二元樹,該序列可以生成一個完美二元樹
|
||
|
List<int> nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
|
||
|
for (int _num in nums) {
|
||
|
bst.insert(_num);
|
||
|
}
|
||
|
print("\n初始化的二元樹為\n");
|
||
|
printTree(bst.getRoot());
|
||
|
|
||
|
/* 查詢節點 */
|
||
|
TreeNode? node = bst.search(7);
|
||
|
print("\n查詢到的節點物件為 $node ,節點值 = ${node?.val}");
|
||
|
|
||
|
/* 插入節點 */
|
||
|
bst.insert(16);
|
||
|
print("\n插入節點 16 後,二元樹為\n");
|
||
|
printTree(bst.getRoot());
|
||
|
|
||
|
/* 刪除節點 */
|
||
|
bst.remove(1);
|
||
|
print("\n刪除節點 1 後,二元樹為\n");
|
||
|
printTree(bst.getRoot());
|
||
|
bst.remove(2);
|
||
|
print("\n刪除節點 2 後,二元樹為\n");
|
||
|
printTree(bst.getRoot());
|
||
|
bst.remove(4);
|
||
|
print("\n刪除節點 4 後,二元樹為\n");
|
||
|
printTree(bst.getRoot());
|
||
|
}
|