|
|
|
|
/**
|
|
|
|
|
* File: avl_tree.c
|
|
|
|
|
* Created Time: 2023-01-15
|
|
|
|
|
* Author: Reanon (793584285@qq.com)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include "../include/include.h"
|
|
|
|
|
|
|
|
|
|
/* AVL Tree */
|
|
|
|
|
struct avlTree {
|
|
|
|
|
TreeNode *root;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
typedef struct avlTree avlTree;
|
|
|
|
|
|
|
|
|
|
/* 构建 AVL 树 */
|
|
|
|
|
avlTree *newAVLTree() {
|
|
|
|
|
avlTree *tree = (avlTree *) malloc(sizeof(avlTree));
|
|
|
|
|
tree->root = NULL;
|
|
|
|
|
return tree;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int height(TreeNode *node) {
|
|
|
|
|
// 空结点高度为 -1 ,叶结点高度为 0
|
|
|
|
|
if (node != NULL) {
|
|
|
|
|
return node->height;
|
|
|
|
|
}
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 更新结点高度 */
|
|
|
|
|
int updateHeight(TreeNode *node) {
|
|
|
|
|
int lh = height(node->left);
|
|
|
|
|
int rh = height(node->right);
|
|
|
|
|
// 结点高度等于最高子树高度 + 1
|
|
|
|
|
if (lh > rh) {
|
|
|
|
|
node->height = lh + 1;
|
|
|
|
|
} else {
|
|
|
|
|
node->height = rh + 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 获取平衡因子 */
|
|
|
|
|
int balanceFactor(TreeNode *node) {
|
|
|
|
|
// 空结点平衡因子为 0
|
|
|
|
|
if (node == NULL) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
// 结点平衡因子 = 左子树高度 - 右子树高度
|
|
|
|
|
return height(node->left) - height(node->right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 右旋操作 */
|
|
|
|
|
TreeNode *rightRotate(TreeNode *node) {
|
|
|
|
|
TreeNode *child, *grandChild;
|
|
|
|
|
child = node->left;
|
|
|
|
|
grandChild = child->right;
|
|
|
|
|
// 以 child 为原点,将 node 向右旋转
|
|
|
|
|
child->right = node;
|
|
|
|
|
node->left = grandChild;
|
|
|
|
|
// 更新结点高度
|
|
|
|
|
updateHeight(node);
|
|
|
|
|
updateHeight(child);
|
|
|
|
|
// 返回旋转后子树的根节点
|
|
|
|
|
return child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 左旋操作 */
|
|
|
|
|
TreeNode *leftRotate(TreeNode *node) {
|
|
|
|
|
TreeNode *child, *grandChild;
|
|
|
|
|
child = node->right;
|
|
|
|
|
grandChild = child->left;
|
|
|
|
|
// 以 child 为原点,将 node 向左旋转
|
|
|
|
|
child->left = node;
|
|
|
|
|
node->right = grandChild;
|
|
|
|
|
// 更新结点高度
|
|
|
|
|
updateHeight(node);
|
|
|
|
|
updateHeight(child);
|
|
|
|
|
// 返回旋转后子树的根节点
|
|
|
|
|
return child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
|
|
TreeNode *rotate(TreeNode *node) {
|
|
|
|
|
// 获取结点 node 的平衡因子
|
|
|
|
|
int bf = balanceFactor(node);
|
|
|
|
|
// 左偏树
|
|
|
|
|
if (bf > 1) {
|
|
|
|
|
if (balanceFactor(node->left) >= 0) {
|
|
|
|
|
// 右旋
|
|
|
|
|
return rightRotate(node);
|
|
|
|
|
} else {
|
|
|
|
|
// 先左旋后右旋
|
|
|
|
|
node->left = leftRotate(node->left);
|
|
|
|
|
return rightRotate(node);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 右偏树
|
|
|
|
|
if (bf < -1) {
|
|
|
|
|
if (balanceFactor(node->right) <= 0) {
|
|
|
|
|
// 左旋
|
|
|
|
|
return leftRotate(node);
|
|
|
|
|
} else {
|
|
|
|
|
// 先右旋后左旋
|
|
|
|
|
node->right = rightRotate(node->right);
|
|
|
|
|
return leftRotate(node);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 平衡树,无需旋转,直接返回
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 递归插入结点(辅助函数) */
|
|
|
|
|
TreeNode *insertHelper(TreeNode *node, int val) {
|
|
|
|
|
if (node == NULL) {
|
|
|
|
|
return newTreeNode(val);
|
|
|
|
|
}
|
|
|
|
|
/* 1. 查找插入位置,并插入结点 */
|
|
|
|
|
if (val < node->val) {
|
|
|
|
|
node->left = insertHelper(node->left, val);
|
|
|
|
|
} else if (val > node->val) {
|
|
|
|
|
node->right = insertHelper(node->right, val);
|
|
|
|
|
} else {
|
|
|
|
|
// 重复结点不插入,直接返回
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
// 更新结点高度
|
|
|
|
|
updateHeight(node);
|
|
|
|
|
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
|
|
node = rotate(node);
|
|
|
|
|
// 返回子树的根节点
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* 插入结点 */
|
|
|
|
|
TreeNode *insert(avlTree *tree, int val) {
|
|
|
|
|
tree->root = insertHelper(tree->root, val);
|
|
|
|
|
return tree->root;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
|
|
|
|
|
TreeNode *getInOrderNext(TreeNode *node) {
|
|
|
|
|
if (node == NULL) {
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
|
|
|
|
while (node->left != NULL) {
|
|
|
|
|
node = node->left;
|
|
|
|
|
}
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 递归删除结点(辅助函数) */
|
|
|
|
|
TreeNode *removeHelper(TreeNode *node, int val) {
|
|
|
|
|
TreeNode *child, *grandChild, *temp;
|
|
|
|
|
if (node == NULL) {
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
/* 1. 查找结点,并删除之 */
|
|
|
|
|
if (val < node->val) {
|
|
|
|
|
node->left = removeHelper(node->left, val);
|
|
|
|
|
} else if (val > node->val) {
|
|
|
|
|
node->right = removeHelper(node->right, val);
|
|
|
|
|
} else {
|
|
|
|
|
if (node->left == NULL || node->right == NULL) {
|
|
|
|
|
child = node->left;
|
|
|
|
|
if (node->right != NULL) {
|
|
|
|
|
child = node->right;
|
|
|
|
|
}
|
|
|
|
|
// 子结点数量 = 0 ,直接删除 node 并返回
|
|
|
|
|
if (child == NULL) {
|
|
|
|
|
return NULL;
|
|
|
|
|
} else {
|
|
|
|
|
// 子结点数量 = 1 ,直接删除 node
|
|
|
|
|
node = child;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
|
|
|
|
|
temp = getInOrderNext(node->right);
|
|
|
|
|
node->right = removeHelper(node->right, temp->val);
|
|
|
|
|
node->val = temp->val;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 更新结点高度
|
|
|
|
|
updateHeight(node);
|
|
|
|
|
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
|
|
node = rotate(node);
|
|
|
|
|
// 返回子树的根节点
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 删除结点 */
|
|
|
|
|
TreeNode *removeNode(avlTree *tree, int val) {
|
|
|
|
|
TreeNode *root = removeHelper(tree->root, val);
|
|
|
|
|
return root;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 查找结点 */
|
|
|
|
|
TreeNode *search(avlTree *tree, int val) {
|
|
|
|
|
TreeNode *cur = tree->root;
|
|
|
|
|
// 循环查找,越过叶结点后跳出
|
|
|
|
|
while (cur != NULL) {
|
|
|
|
|
// 目标结点在 root 的右子树中
|
|
|
|
|
if (cur->val < val) {
|
|
|
|
|
cur = cur->right;
|
|
|
|
|
} else if (cur->val > val) {
|
|
|
|
|
// 目标结点在 root 的左子树中
|
|
|
|
|
cur = cur->left;
|
|
|
|
|
} else {
|
|
|
|
|
// 找到目标结点,跳出循环
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 找到目标结点,跳出循环
|
|
|
|
|
return cur;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void testInsert(avlTree *tree, int val) {
|
|
|
|
|
insert(tree, val);
|
|
|
|
|
printf("\n插入结点 %d 后,AVL 树为 \n", val);
|
|
|
|
|
printTree(tree->root);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void testRemove(avlTree *tree, int val) {
|
|
|
|
|
removeNode(tree, val);
|
|
|
|
|
printf("\n删除结点 %d 后,AVL 树为 \n", val);
|
|
|
|
|
printTree(tree->root);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Driver Code */
|
|
|
|
|
int main() {
|
|
|
|
|
/* 初始化空 AVL 树 */
|
|
|
|
|
avlTree *tree = (avlTree *) newAVLTree();
|
|
|
|
|
/* 插入结点 */
|
|
|
|
|
// 请关注插入结点后,AVL 树是如何保持平衡的
|
|
|
|
|
testInsert(tree, 1);
|
|
|
|
|
testInsert(tree, 2);
|
|
|
|
|
testInsert(tree, 3);
|
|
|
|
|
testInsert(tree, 4);
|
|
|
|
|
testInsert(tree, 5);
|
|
|
|
|
testInsert(tree, 8);
|
|
|
|
|
testInsert(tree, 7);
|
|
|
|
|
testInsert(tree, 9);
|
|
|
|
|
testInsert(tree, 10);
|
|
|
|
|
testInsert(tree, 6);
|
|
|
|
|
|
|
|
|
|
/* 插入重复结点 */
|
|
|
|
|
testInsert(tree, 7);
|
|
|
|
|
|
|
|
|
|
/* 删除结点 */
|
|
|
|
|
// 请关注删除结点后,AVL 树是如何保持平衡的
|
|
|
|
|
testRemove(tree, 8); // 删除度为 0 的结点
|
|
|
|
|
testRemove(tree, 5); // 删除度为 1 的结点
|
|
|
|
|
testRemove(tree, 4); // 删除度为 2 的结点
|
|
|
|
|
|
|
|
|
|
/* 查询结点 */
|
|
|
|
|
TreeNode *node = search(tree, 7);
|
|
|
|
|
printf("\n查找到的结点对象结点值 = %d \n", node->val);
|
|
|
|
|
}
|