|
|
|
=begin
|
|
|
|
File: time_complexity.rb
|
|
|
|
Created Time: 2024-03-30
|
|
|
|
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
|
|
|
|
=end
|
|
|
|
|
|
|
|
### 常數階 ###
|
|
|
|
def constant(n)
|
|
|
|
count = 0
|
|
|
|
size = 100000
|
|
|
|
|
|
|
|
(0...size).each { count += 1 }
|
|
|
|
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 線性階 ###
|
|
|
|
def linear(n)
|
|
|
|
count = 0
|
|
|
|
(0...n).each { count += 1 }
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 線性階(走訪陣列)###
|
|
|
|
def array_traversal(nums)
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
# 迴圈次數與陣列長度成正比
|
|
|
|
for num in nums
|
|
|
|
count += 1
|
|
|
|
end
|
|
|
|
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 平方階 ###
|
|
|
|
def quadratic(n)
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
# 迴圈次數與資料大小 n 成平方關係
|
|
|
|
for i in 0...n
|
|
|
|
for j in 0...n
|
|
|
|
count += 1
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 平方階(泡沫排序)###
|
|
|
|
def bubble_sort(nums)
|
|
|
|
count = 0 # 計數器
|
|
|
|
|
|
|
|
# 外迴圈:未排序區間為 [0, i]
|
|
|
|
for i in (nums.length - 1).downto(0)
|
|
|
|
# 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
|
|
|
|
for j in 0...i
|
|
|
|
if nums[j] > nums[j + 1]
|
|
|
|
# 交換 nums[j] 與 nums[j + 1]
|
|
|
|
tmp = nums[j]
|
|
|
|
nums[j] = nums[j + 1]
|
|
|
|
nums[j + 1] = tmp
|
|
|
|
count += 3 # 元素交換包含 3 個單元操作
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 指數階(迴圈實現)###
|
|
|
|
def exponential(n)
|
|
|
|
count, base = 0, 1
|
|
|
|
|
|
|
|
# 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
|
|
|
|
(0...n).each do
|
|
|
|
(0...base).each { count += 1 }
|
|
|
|
base *= 2
|
|
|
|
end
|
|
|
|
|
|
|
|
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 指數階(遞迴實現)###
|
|
|
|
def exp_recur(n)
|
|
|
|
return 1 if n == 1
|
|
|
|
exp_recur(n - 1) + exp_recur(n - 1) + 1
|
|
|
|
end
|
|
|
|
|
|
|
|
### 對數階(迴圈實現)###
|
|
|
|
def logarithmic(n)
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
while n > 1
|
|
|
|
n /= 2
|
|
|
|
count += 1
|
|
|
|
end
|
|
|
|
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 對數階(遞迴實現)###
|
|
|
|
def log_recur(n)
|
|
|
|
return 0 unless n > 1
|
|
|
|
log_recur(n / 2) + 1
|
|
|
|
end
|
|
|
|
|
|
|
|
### 線性對數階 ###
|
|
|
|
def linear_log_recur(n)
|
|
|
|
return 1 unless n > 1
|
|
|
|
|
|
|
|
count = linear_log_recur(n / 2) + linear_log_recur(n / 2)
|
|
|
|
(0...n).each { count += 1 }
|
|
|
|
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### 階乘階(遞迴實現)###
|
|
|
|
def factorial_recur(n)
|
|
|
|
return 1 if n == 0
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
# 從 1 個分裂出 n 個
|
|
|
|
(0...n).each { count += factorial_recur(n - 1) }
|
|
|
|
|
|
|
|
count
|
|
|
|
end
|
|
|
|
|
|
|
|
### Driver Code ###
|
|
|
|
|
|
|
|
# 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
|
|
|
|
n = 8
|
|
|
|
puts "輸入資料大小 n = #{n}"
|
|
|
|
|
|
|
|
count = constant(n)
|
|
|
|
puts "常數階的操作數量 = #{count}"
|
|
|
|
|
|
|
|
count = linear(n)
|
|
|
|
puts "線性階的操作數量 = #{count}"
|
|
|
|
count = array_traversal(Array.new(n, 0))
|
|
|
|
puts "線性階(走訪陣列)的操作數量 = #{count}"
|
|
|
|
|
|
|
|
count = quadratic(n)
|
|
|
|
puts "平方階的操作數量 = #{count}"
|
|
|
|
nums = Array.new(n) { |i| n - i } # [n, n-1, ..., 2, 1]
|
|
|
|
count = bubble_sort(nums)
|
|
|
|
puts "平方階(泡沫排序)的操作數量 = #{count}"
|
|
|
|
|
|
|
|
count = exponential(n)
|
|
|
|
puts "指數階(迴圈實現)的操作數量 = #{count}"
|
|
|
|
count = exp_recur(n)
|
|
|
|
puts "指數階(遞迴實現)的操作數量 = #{count}"
|
|
|
|
|
|
|
|
count = logarithmic(n)
|
|
|
|
puts "對數階(迴圈實現)的操作數量 = #{count}"
|
|
|
|
count = log_recur(n)
|
|
|
|
puts "對數階(遞迴實現)的操作數量 = #{count}"
|
|
|
|
|
|
|
|
count = linear_log_recur(n)
|
|
|
|
puts "線性對數階(遞迴實現)的操作數量 = #{count}"
|
|
|
|
|
|
|
|
count = factorial_recur(n)
|
|
|
|
puts "階乘階(遞迴實現)的操作數量 = #{count}"
|