|
|
|
|
---
|
|
|
|
|
comments: true
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# 7.2 二叉树遍历
|
|
|
|
|
|
|
|
|
|
从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。
|
|
|
|
|
|
|
|
|
|
二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。
|
|
|
|
|
|
|
|
|
|
## 7.2.1 层序遍历
|
|
|
|
|
|
|
|
|
|
如图 7-9 所示,「层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。
|
|
|
|
|
|
|
|
|
|
层序遍历本质上属于「广度优先遍历 breadth-first traversal」,也称「广度优先搜索 breadth-first search, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
|
|
|
|
|
|
|
|
|
|
![二叉树的层序遍历](binary_tree_traversal.assets/binary_tree_bfs.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 图 7-9 二叉树的层序遍历 </p>
|
|
|
|
|
|
|
|
|
|
### 1. 代码实现
|
|
|
|
|
|
|
|
|
|
广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。实现代码如下:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="binary_tree_bfs.py"
|
|
|
|
|
def level_order(root: TreeNode | None) -> list[int]:
|
|
|
|
|
"""层序遍历"""
|
|
|
|
|
# 初始化队列,加入根节点
|
|
|
|
|
queue: deque[TreeNode] = deque()
|
|
|
|
|
queue.append(root)
|
|
|
|
|
# 初始化一个列表,用于保存遍历序列
|
|
|
|
|
res = []
|
|
|
|
|
while queue:
|
|
|
|
|
node: TreeNode = queue.popleft() # 队列出队
|
|
|
|
|
res.append(node.val) # 保存节点值
|
|
|
|
|
if node.left is not None:
|
|
|
|
|
queue.append(node.left) # 左子节点入队
|
|
|
|
|
if node.right is not None:
|
|
|
|
|
queue.append(node.right) # 右子节点入队
|
|
|
|
|
return res
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="binary_tree_bfs.cpp"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
vector<int> levelOrder(TreeNode *root) {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
queue<TreeNode *> queue;
|
|
|
|
|
queue.push(root);
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
vector<int> vec;
|
|
|
|
|
while (!queue.empty()) {
|
|
|
|
|
TreeNode *node = queue.front();
|
|
|
|
|
queue.pop(); // 队列出队
|
|
|
|
|
vec.push_back(node->val); // 保存节点值
|
|
|
|
|
if (node->left != nullptr)
|
|
|
|
|
queue.push(node->left); // 左子节点入队
|
|
|
|
|
if (node->right != nullptr)
|
|
|
|
|
queue.push(node->right); // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
return vec;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="binary_tree_bfs.java"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
List<Integer> levelOrder(TreeNode root) {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
Queue<TreeNode> queue = new LinkedList<>();
|
|
|
|
|
queue.add(root);
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
List<Integer> list = new ArrayList<>();
|
|
|
|
|
while (!queue.isEmpty()) {
|
|
|
|
|
TreeNode node = queue.poll(); // 队列出队
|
|
|
|
|
list.add(node.val); // 保存节点值
|
|
|
|
|
if (node.left != null)
|
|
|
|
|
queue.offer(node.left); // 左子节点入队
|
|
|
|
|
if (node.right != null)
|
|
|
|
|
queue.offer(node.right); // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
return list;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="binary_tree_bfs.cs"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
List<int> LevelOrder(TreeNode root) {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
Queue<TreeNode> queue = new();
|
|
|
|
|
queue.Enqueue(root);
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
List<int> list = [];
|
|
|
|
|
while (queue.Count != 0) {
|
|
|
|
|
TreeNode node = queue.Dequeue(); // 队列出队
|
|
|
|
|
list.Add(node.val!.Value); // 保存节点值
|
|
|
|
|
if (node.left != null)
|
|
|
|
|
queue.Enqueue(node.left); // 左子节点入队
|
|
|
|
|
if (node.right != null)
|
|
|
|
|
queue.Enqueue(node.right); // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
return list;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="binary_tree_bfs.go"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
func levelOrder(root *TreeNode) []any {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
queue := list.New()
|
|
|
|
|
queue.PushBack(root)
|
|
|
|
|
// 初始化一个切片,用于保存遍历序列
|
|
|
|
|
nums := make([]any, 0)
|
|
|
|
|
for queue.Len() > 0 {
|
|
|
|
|
// 队列出队
|
|
|
|
|
node := queue.Remove(queue.Front()).(*TreeNode)
|
|
|
|
|
// 保存节点值
|
|
|
|
|
nums = append(nums, node.Val)
|
|
|
|
|
if node.Left != nil {
|
|
|
|
|
// 左子节点入队
|
|
|
|
|
queue.PushBack(node.Left)
|
|
|
|
|
}
|
|
|
|
|
if node.Right != nil {
|
|
|
|
|
// 右子节点入队
|
|
|
|
|
queue.PushBack(node.Right)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return nums
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="binary_tree_bfs.swift"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
func levelOrder(root: TreeNode) -> [Int] {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
var queue: [TreeNode] = [root]
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
var list: [Int] = []
|
|
|
|
|
while !queue.isEmpty {
|
|
|
|
|
let node = queue.removeFirst() // 队列出队
|
|
|
|
|
list.append(node.val) // 保存节点值
|
|
|
|
|
if let left = node.left {
|
|
|
|
|
queue.append(left) // 左子节点入队
|
|
|
|
|
}
|
|
|
|
|
if let right = node.right {
|
|
|
|
|
queue.append(right) // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return list
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="binary_tree_bfs.js"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
function levelOrder(root) {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
const queue = [root];
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
const list = [];
|
|
|
|
|
while (queue.length) {
|
|
|
|
|
let node = queue.shift(); // 队列出队
|
|
|
|
|
list.push(node.val); // 保存节点值
|
|
|
|
|
if (node.left) queue.push(node.left); // 左子节点入队
|
|
|
|
|
if (node.right) queue.push(node.right); // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
return list;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="binary_tree_bfs.ts"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
function levelOrder(root: TreeNode | null): number[] {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
const queue = [root];
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
const list: number[] = [];
|
|
|
|
|
while (queue.length) {
|
|
|
|
|
let node = queue.shift() as TreeNode; // 队列出队
|
|
|
|
|
list.push(node.val); // 保存节点值
|
|
|
|
|
if (node.left) {
|
|
|
|
|
queue.push(node.left); // 左子节点入队
|
|
|
|
|
}
|
|
|
|
|
if (node.right) {
|
|
|
|
|
queue.push(node.right); // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return list;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="binary_tree_bfs.dart"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
List<int> levelOrder(TreeNode? root) {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
Queue<TreeNode?> queue = Queue();
|
|
|
|
|
queue.add(root);
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
List<int> res = [];
|
|
|
|
|
while (queue.isNotEmpty) {
|
|
|
|
|
TreeNode? node = queue.removeFirst(); // 队列出队
|
|
|
|
|
res.add(node!.val); // 保存节点值
|
|
|
|
|
if (node.left != null) queue.add(node.left); // 左子节点入队
|
|
|
|
|
if (node.right != null) queue.add(node.right); // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="binary_tree_bfs.rs"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
fn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
let mut que = VecDeque::new();
|
|
|
|
|
que.push_back(Rc::clone(&root));
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
let mut vec = Vec::new();
|
|
|
|
|
|
|
|
|
|
while let Some(node) = que.pop_front() { // 队列出队
|
|
|
|
|
vec.push(node.borrow().val); // 保存节点值
|
|
|
|
|
if let Some(left) = node.borrow().left.as_ref() {
|
|
|
|
|
que.push_back(Rc::clone(left)); // 左子节点入队
|
|
|
|
|
}
|
|
|
|
|
if let Some(right) = node.borrow().right.as_ref() {
|
|
|
|
|
que.push_back(Rc::clone(right)); // 右子节点入队
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
vec
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="binary_tree_bfs.c"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
int *levelOrder(TreeNode *root, int *size) {
|
|
|
|
|
/* 辅助队列 */
|
|
|
|
|
int front, rear;
|
|
|
|
|
int index, *arr;
|
|
|
|
|
TreeNode *node;
|
|
|
|
|
TreeNode **queue;
|
|
|
|
|
|
|
|
|
|
/* 辅助队列 */
|
|
|
|
|
queue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_SIZE);
|
|
|
|
|
// 队列指针
|
|
|
|
|
front = 0, rear = 0;
|
|
|
|
|
// 加入根节点
|
|
|
|
|
queue[rear++] = root;
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
/* 辅助数组 */
|
|
|
|
|
arr = (int *)malloc(sizeof(int) * MAX_SIZE);
|
|
|
|
|
// 数组指针
|
|
|
|
|
index = 0;
|
|
|
|
|
while (front < rear) {
|
|
|
|
|
// 队列出队
|
|
|
|
|
node = queue[front++];
|
|
|
|
|
// 保存节点值
|
|
|
|
|
arr[index++] = node->val;
|
|
|
|
|
if (node->left != NULL) {
|
|
|
|
|
// 左子节点入队
|
|
|
|
|
queue[rear++] = node->left;
|
|
|
|
|
}
|
|
|
|
|
if (node->right != NULL) {
|
|
|
|
|
// 右子节点入队
|
|
|
|
|
queue[rear++] = node->right;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 更新数组长度的值
|
|
|
|
|
*size = index;
|
|
|
|
|
arr = realloc(arr, sizeof(int) * (*size));
|
|
|
|
|
|
|
|
|
|
// 释放辅助数组空间
|
|
|
|
|
free(queue);
|
|
|
|
|
return arr;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="binary_tree_bfs.zig"
|
|
|
|
|
// 层序遍历
|
|
|
|
|
fn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {
|
|
|
|
|
// 初始化队列,加入根节点
|
|
|
|
|
const L = std.TailQueue(*inc.TreeNode(T));
|
|
|
|
|
var queue = L{};
|
|
|
|
|
var root_node = try mem_allocator.create(L.Node);
|
|
|
|
|
root_node.data = root;
|
|
|
|
|
queue.append(root_node);
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
var list = std.ArrayList(T).init(std.heap.page_allocator);
|
|
|
|
|
while (queue.len > 0) {
|
|
|
|
|
var queue_node = queue.popFirst().?; // 队列出队
|
|
|
|
|
var node = queue_node.data;
|
|
|
|
|
try list.append(node.val); // 保存节点值
|
|
|
|
|
if (node.left != null) {
|
|
|
|
|
var tmp_node = try mem_allocator.create(L.Node);
|
|
|
|
|
tmp_node.data = node.left.?;
|
|
|
|
|
queue.append(tmp_node); // 左子节点入队
|
|
|
|
|
}
|
|
|
|
|
if (node.right != null) {
|
|
|
|
|
var tmp_node = try mem_allocator.create(L.Node);
|
|
|
|
|
tmp_node.data = node.right.?;
|
|
|
|
|
queue.append(tmp_node); // 右子节点入队
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return list;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 2. 复杂度分析
|
|
|
|
|
|
|
|
|
|
- **时间复杂度为 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为节点数量。
|
|
|
|
|
- **空间复杂度为 $O(n)$** :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 $(n + 1) / 2$ 个节点,占用 $O(n)$ 空间。
|
|
|
|
|
|
|
|
|
|
## 7.2.2 前序、中序、后序遍历
|
|
|
|
|
|
|
|
|
|
相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」,也称「深度优先搜索 depth-first search, DFS」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
|
|
|
|
|
|
|
|
|
|
图 7-10 展示了对二叉树进行深度优先遍历的工作原理。**深度优先遍历就像是绕着整棵二叉树的外围“走”一圈**,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。
|
|
|
|
|
|
|
|
|
|
![二叉搜索树的前序、中序、后序遍历](binary_tree_traversal.assets/binary_tree_dfs.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 图 7-10 二叉搜索树的前序、中序、后序遍历 </p>
|
|
|
|
|
|
|
|
|
|
### 1. 代码实现
|
|
|
|
|
|
|
|
|
|
深度优先搜索通常基于递归实现:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="binary_tree_dfs.py"
|
|
|
|
|
def pre_order(root: TreeNode | None):
|
|
|
|
|
"""前序遍历"""
|
|
|
|
|
if root is None:
|
|
|
|
|
return
|
|
|
|
|
# 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
res.append(root.val)
|
|
|
|
|
pre_order(root=root.left)
|
|
|
|
|
pre_order(root=root.right)
|
|
|
|
|
|
|
|
|
|
def in_order(root: TreeNode | None):
|
|
|
|
|
"""中序遍历"""
|
|
|
|
|
if root is None:
|
|
|
|
|
return
|
|
|
|
|
# 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
in_order(root=root.left)
|
|
|
|
|
res.append(root.val)
|
|
|
|
|
in_order(root=root.right)
|
|
|
|
|
|
|
|
|
|
def post_order(root: TreeNode | None):
|
|
|
|
|
"""后序遍历"""
|
|
|
|
|
if root is None:
|
|
|
|
|
return
|
|
|
|
|
# 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
post_order(root=root.left)
|
|
|
|
|
post_order(root=root.right)
|
|
|
|
|
res.append(root.val)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="binary_tree_dfs.cpp"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
void preOrder(TreeNode *root) {
|
|
|
|
|
if (root == nullptr)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
vec.push_back(root->val);
|
|
|
|
|
preOrder(root->left);
|
|
|
|
|
preOrder(root->right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
void inOrder(TreeNode *root) {
|
|
|
|
|
if (root == nullptr)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(root->left);
|
|
|
|
|
vec.push_back(root->val);
|
|
|
|
|
inOrder(root->right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
void postOrder(TreeNode *root) {
|
|
|
|
|
if (root == nullptr)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(root->left);
|
|
|
|
|
postOrder(root->right);
|
|
|
|
|
vec.push_back(root->val);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="binary_tree_dfs.java"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
void preOrder(TreeNode root) {
|
|
|
|
|
if (root == null)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
list.add(root.val);
|
|
|
|
|
preOrder(root.left);
|
|
|
|
|
preOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
void inOrder(TreeNode root) {
|
|
|
|
|
if (root == null)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(root.left);
|
|
|
|
|
list.add(root.val);
|
|
|
|
|
inOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
void postOrder(TreeNode root) {
|
|
|
|
|
if (root == null)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(root.left);
|
|
|
|
|
postOrder(root.right);
|
|
|
|
|
list.add(root.val);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="binary_tree_dfs.cs"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
void PreOrder(TreeNode? root) {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
list.Add(root.val!.Value);
|
|
|
|
|
PreOrder(root.left);
|
|
|
|
|
PreOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
void InOrder(TreeNode? root) {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
InOrder(root.left);
|
|
|
|
|
list.Add(root.val!.Value);
|
|
|
|
|
InOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
void PostOrder(TreeNode? root) {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
PostOrder(root.left);
|
|
|
|
|
PostOrder(root.right);
|
|
|
|
|
list.Add(root.val!.Value);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="binary_tree_dfs.go"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
func preOrder(node *TreeNode) {
|
|
|
|
|
if node == nil {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
nums = append(nums, node.Val)
|
|
|
|
|
preOrder(node.Left)
|
|
|
|
|
preOrder(node.Right)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
func inOrder(node *TreeNode) {
|
|
|
|
|
if node == nil {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(node.Left)
|
|
|
|
|
nums = append(nums, node.Val)
|
|
|
|
|
inOrder(node.Right)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
func postOrder(node *TreeNode) {
|
|
|
|
|
if node == nil {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(node.Left)
|
|
|
|
|
postOrder(node.Right)
|
|
|
|
|
nums = append(nums, node.Val)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="binary_tree_dfs.swift"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
func preOrder(root: TreeNode?) {
|
|
|
|
|
guard let root = root else {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
list.append(root.val)
|
|
|
|
|
preOrder(root: root.left)
|
|
|
|
|
preOrder(root: root.right)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
func inOrder(root: TreeNode?) {
|
|
|
|
|
guard let root = root else {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(root: root.left)
|
|
|
|
|
list.append(root.val)
|
|
|
|
|
inOrder(root: root.right)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
func postOrder(root: TreeNode?) {
|
|
|
|
|
guard let root = root else {
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(root: root.left)
|
|
|
|
|
postOrder(root: root.right)
|
|
|
|
|
list.append(root.val)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="binary_tree_dfs.js"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
function preOrder(root) {
|
|
|
|
|
if (root === null) return;
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
list.push(root.val);
|
|
|
|
|
preOrder(root.left);
|
|
|
|
|
preOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
function inOrder(root) {
|
|
|
|
|
if (root === null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(root.left);
|
|
|
|
|
list.push(root.val);
|
|
|
|
|
inOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
function postOrder(root) {
|
|
|
|
|
if (root === null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(root.left);
|
|
|
|
|
postOrder(root.right);
|
|
|
|
|
list.push(root.val);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="binary_tree_dfs.ts"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
function preOrder(root: TreeNode | null): void {
|
|
|
|
|
if (root === null) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
list.push(root.val);
|
|
|
|
|
preOrder(root.left);
|
|
|
|
|
preOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
function inOrder(root: TreeNode | null): void {
|
|
|
|
|
if (root === null) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(root.left);
|
|
|
|
|
list.push(root.val);
|
|
|
|
|
inOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
function postOrder(root: TreeNode | null): void {
|
|
|
|
|
if (root === null) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(root.left);
|
|
|
|
|
postOrder(root.right);
|
|
|
|
|
list.push(root.val);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="binary_tree_dfs.dart"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
void preOrder(TreeNode? node) {
|
|
|
|
|
if (node == null) return;
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
list.add(node.val);
|
|
|
|
|
preOrder(node.left);
|
|
|
|
|
preOrder(node.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
void inOrder(TreeNode? node) {
|
|
|
|
|
if (node == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(node.left);
|
|
|
|
|
list.add(node.val);
|
|
|
|
|
inOrder(node.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
void postOrder(TreeNode? node) {
|
|
|
|
|
if (node == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(node.left);
|
|
|
|
|
postOrder(node.right);
|
|
|
|
|
list.add(node.val);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="binary_tree_dfs.rs"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
fn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
|
|
|
|
let mut result = vec![];
|
|
|
|
|
|
|
|
|
|
if let Some(node) = root {
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
result.push(node.borrow().val);
|
|
|
|
|
result.append(&mut pre_order(node.borrow().left.as_ref()));
|
|
|
|
|
result.append(&mut pre_order(node.borrow().right.as_ref()));
|
|
|
|
|
}
|
|
|
|
|
result
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
fn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
|
|
|
|
let mut result = vec![];
|
|
|
|
|
|
|
|
|
|
if let Some(node) = root {
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
result.append(&mut in_order(node.borrow().left.as_ref()));
|
|
|
|
|
result.push(node.borrow().val);
|
|
|
|
|
result.append(&mut in_order(node.borrow().right.as_ref()));
|
|
|
|
|
}
|
|
|
|
|
result
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
fn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {
|
|
|
|
|
let mut result = vec![];
|
|
|
|
|
|
|
|
|
|
if let Some(node) = root {
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
result.append(&mut post_order(node.borrow().left.as_ref()));
|
|
|
|
|
result.append(&mut post_order(node.borrow().right.as_ref()));
|
|
|
|
|
result.push(node.borrow().val);
|
|
|
|
|
}
|
|
|
|
|
result
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="binary_tree_dfs.c"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
void preOrder(TreeNode *root, int *size) {
|
|
|
|
|
if (root == NULL)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
arr[(*size)++] = root->val;
|
|
|
|
|
preOrder(root->left, size);
|
|
|
|
|
preOrder(root->right, size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
void inOrder(TreeNode *root, int *size) {
|
|
|
|
|
if (root == NULL)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
inOrder(root->left, size);
|
|
|
|
|
arr[(*size)++] = root->val;
|
|
|
|
|
inOrder(root->right, size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
void postOrder(TreeNode *root, int *size) {
|
|
|
|
|
if (root == NULL)
|
|
|
|
|
return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
postOrder(root->left, size);
|
|
|
|
|
postOrder(root->right, size);
|
|
|
|
|
arr[(*size)++] = root->val;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="binary_tree_dfs.zig"
|
|
|
|
|
// 前序遍历
|
|
|
|
|
fn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:根节点 -> 左子树 -> 右子树
|
|
|
|
|
try list.append(root.?.val);
|
|
|
|
|
try preOrder(T, root.?.left);
|
|
|
|
|
try preOrder(T, root.?.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 中序遍历
|
|
|
|
|
fn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 根节点 -> 右子树
|
|
|
|
|
try inOrder(T, root.?.left);
|
|
|
|
|
try list.append(root.?.val);
|
|
|
|
|
try inOrder(T, root.?.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 后序遍历
|
|
|
|
|
fn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根节点
|
|
|
|
|
try postOrder(T, root.?.left);
|
|
|
|
|
try postOrder(T, root.?.right);
|
|
|
|
|
try list.append(root.?.val);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
|
|
|
|
深度优先搜索也可以基于迭代实现,有兴趣的读者可以自行研究。
|
|
|
|
|
|
|
|
|
|
图 7-11 展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分。
|
|
|
|
|
|
|
|
|
|
1. “递”表示开启新方法,程序在此过程中访问下一个节点。
|
|
|
|
|
2. “归”表示函数返回,代表当前节点已经访问完毕。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![前序遍历的递归过程](binary_tree_traversal.assets/preorder_step1.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![preorder_step2](binary_tree_traversal.assets/preorder_step2.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![preorder_step3](binary_tree_traversal.assets/preorder_step3.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![preorder_step4](binary_tree_traversal.assets/preorder_step4.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![preorder_step5](binary_tree_traversal.assets/preorder_step5.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![preorder_step6](binary_tree_traversal.assets/preorder_step6.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![preorder_step7](binary_tree_traversal.assets/preorder_step7.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<8>"
|
|
|
|
|
![preorder_step8](binary_tree_traversal.assets/preorder_step8.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<9>"
|
|
|
|
|
![preorder_step9](binary_tree_traversal.assets/preorder_step9.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<10>"
|
|
|
|
|
![preorder_step10](binary_tree_traversal.assets/preorder_step10.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<11>"
|
|
|
|
|
![preorder_step11](binary_tree_traversal.assets/preorder_step11.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 图 7-11 前序遍历的递归过程 </p>
|
|
|
|
|
|
|
|
|
|
### 2. 复杂度分析
|
|
|
|
|
|
|
|
|
|
- **时间复杂度为 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间。
|
|
|
|
|
- **空间复杂度为 $O(n)$** :在最差情况下,即树退化为链表时,递归深度达到 $n$ ,系统占用 $O(n)$ 栈帧空间。
|