|
|
|
|
# 二分查找
|
|
|
|
|
|
|
|
|
|
「二分查找 binary search」是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮缩小一半搜索范围,直至找到目标元素或搜索区间为空为止。
|
|
|
|
|
|
|
|
|
|
!!! question
|
|
|
|
|
|
|
|
|
|
给定一个长度为 $n$ 的数组 `nums` ,元素按从小到大的顺序排列且不重复。请查找并返回元素 `target` 在该数组中的索引。若数组不包含该元素,则返回 $-1$ 。示例如下图所示。
|
|
|
|
|
|
|
|
|
|
![二分查找示例数据](binary_search.assets/binary_search_example.png)
|
|
|
|
|
|
|
|
|
|
如下图所示,我们先初始化指针 $i = 0$ 和 $j = n - 1$ ,分别指向数组首元素和尾元素,代表搜索区间 $[0, n - 1]$ 。请注意,中括号表示闭区间,其包含边界值本身。
|
|
|
|
|
|
|
|
|
|
接下来,循环执行以下两步。
|
|
|
|
|
|
|
|
|
|
1. 计算中点索引 $m = \lfloor {(i + j) / 2} \rfloor$ ,其中 $\lfloor \: \rfloor$ 表示向下取整操作。
|
|
|
|
|
2. 判断 `nums[m]` 和 `target` 的大小关系,分为以下三种情况。
|
|
|
|
|
1. 当 `nums[m] < target` 时,说明 `target` 在区间 $[m + 1, j]$ 中,因此执行 $i = m + 1$ 。
|
|
|
|
|
2. 当 `nums[m] > target` 时,说明 `target` 在区间 $[i, m - 1]$ 中,因此执行 $j = m - 1$ 。
|
|
|
|
|
3. 当 `nums[m] = target` 时,说明找到 `target` ,因此返回索引 $m$ 。
|
|
|
|
|
|
|
|
|
|
若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 $-1$ 。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![二分查找流程](binary_search.assets/binary_search_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![binary_search_step2](binary_search.assets/binary_search_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![binary_search_step3](binary_search.assets/binary_search_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![binary_search_step4](binary_search.assets/binary_search_step4.png)
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![binary_search_step5](binary_search.assets/binary_search_step5.png)
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![binary_search_step6](binary_search.assets/binary_search_step6.png)
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![binary_search_step7](binary_search.assets/binary_search_step7.png)
|
|
|
|
|
|
|
|
|
|
值得注意的是,由于 $i$ 和 $j$ 都是 `int` 类型,**因此 $i + j$ 可能会超出 `int` 类型的取值范围**。为了避免大数越界,我们通常采用公式 $m = \lfloor {i + (j - i) / 2} \rfloor$ 来计算中点。
|
|
|
|
|
|
|
|
|
|
代码如下所示:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{binary_search}-[class]{}-[func]{binary_search}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**时间复杂度为 $O(\log n)$** :在二分循环中,区间每轮缩小一半,循环次数为 $\log_2 n$ 。
|
|
|
|
|
|
|
|
|
|
**空间复杂度为 $O(1)$** :指针 $i$ 和 $j$ 使用常数大小空间。
|
|
|
|
|
|
|
|
|
|
## 区间表示方法
|
|
|
|
|
|
|
|
|
|
除了上述双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 $[0, n)$ ,即左边界包含自身,右边界不包含自身。在该表示下,区间 $[i, j)$ 在 $i = j$ 时为空。
|
|
|
|
|
|
|
|
|
|
我们可以基于该表示实现具有相同功能的二分查找算法:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{binary_search}-[class]{}-[func]{binary_search_lcro}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
如下图所示,在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。
|
|
|
|
|
|
|
|
|
|
由于“双闭区间”表示中的左右边界都被定义为闭区间,因此通过指针 $i$ 和指针 $j$ 缩小区间的操作也是对称的。这样更不容易出错,**因此一般建议采用“双闭区间”的写法**。
|
|
|
|
|
|
|
|
|
|
![两种区间定义](binary_search.assets/binary_search_ranges.png)
|
|
|
|
|
|
|
|
|
|
## 优点与局限性
|
|
|
|
|
|
|
|
|
|
二分查找在时间和空间方面都有较好的性能。
|
|
|
|
|
|
|
|
|
|
- 二分查找的时间效率高。在大数据量下,对数阶的时间复杂度具有显著优势。例如,当数据大小 $n = 2^{20}$ 时,线性查找需要 $2^{20} = 1048576$ 轮循环,而二分查找仅需 $\log_2 2^{20} = 20$ 轮循环。
|
|
|
|
|
- 二分查找无须额外空间。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。
|
|
|
|
|
|
|
|
|
|
然而,二分查找并非适用于所有情况,主要有以下原因。
|
|
|
|
|
|
|
|
|
|
- 二分查找仅适用于有序数据。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 $O(n \log n)$ ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。
|
|
|
|
|
- 二分查找仅适用于数组。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
|
|
|
|
|
- 小数据量下,线性查找性能更佳。在线性查找中,每轮只需 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 $n$ 较小时,线性查找反而比二分查找更快。
|