|
|
|
|
# 链表
|
|
|
|
|
|
|
|
|
|
内存空间是所有程序的公共资源,在一个复杂的系统运行环境下,空闲的内存空间可能散落在内存各处。我们知道,存储数组的内存空间必须是连续的,而当数组非常大时,内存可能无法提供如此大的连续空间。此时链表的灵活性优势就体现出来了。
|
|
|
|
|
|
|
|
|
|
「链表 linked list」是一种线性数据结构,其中的每个元素都是一个节点对象,各个节点通过“引用”相连接。引用记录了下一个节点的内存地址,通过它可以从当前节点访问到下一个节点。
|
|
|
|
|
|
|
|
|
|
链表的设计使得各个节点可以分散存储在内存各处,它们的内存地址无须连续。
|
|
|
|
|
|
|
|
|
|
![链表定义与存储方式](linked_list.assets/linkedlist_definition.png)
|
|
|
|
|
|
|
|
|
|
观察上图,链表的组成单位是「节点 node」对象。每个节点都包含两项数据:节点的“值”和指向下一节点的“引用”。
|
|
|
|
|
|
|
|
|
|
- 链表的首个节点被称为“头节点”,最后一个节点被称为“尾节点”。
|
|
|
|
|
- 尾节点指向的是“空”,它在 Java、C++ 和 Python 中分别被记为 `null`、`nullptr` 和 `None` 。
|
|
|
|
|
- 在 C、C++、Go 和 Rust 等支持指针的语言中,上述“引用”应被替换为“指针”。
|
|
|
|
|
|
|
|
|
|
如以下代码所示,链表节点 `ListNode` 除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,**链表比数组占用更多的内存空间**。
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title=""
|
|
|
|
|
class ListNode:
|
|
|
|
|
"""链表节点类"""
|
|
|
|
|
def __init__(self, val: int):
|
|
|
|
|
self.val: int = val # 节点值
|
|
|
|
|
self.next: ListNode | None = None # 指向下一节点的引用
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title=""
|
|
|
|
|
/* 链表节点结构体 */
|
|
|
|
|
struct ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
ListNode *next; // 指向下一节点的指针
|
|
|
|
|
ListNode(int x) : val(x), next(nullptr) {} // 构造函数
|
|
|
|
|
};
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title=""
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
ListNode next; // 指向下一节点的引用
|
|
|
|
|
ListNode(int x) { val = x; } // 构造函数
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title=""
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
class ListNode(int x) { //构造函数
|
|
|
|
|
int val = x; // 节点值
|
|
|
|
|
ListNode? next; // 指向下一节点的引用
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title=""
|
|
|
|
|
/* 链表节点结构体 */
|
|
|
|
|
type ListNode struct {
|
|
|
|
|
Val int // 节点值
|
|
|
|
|
Next *ListNode // 指向下一节点的指针
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NewListNode 构造函数,创建一个新的链表
|
|
|
|
|
func NewListNode(val int) *ListNode {
|
|
|
|
|
return &ListNode{
|
|
|
|
|
Val: val,
|
|
|
|
|
Next: nil,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title=""
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
var val: Int // 节点值
|
|
|
|
|
var next: ListNode? // 指向下一节点的引用
|
|
|
|
|
|
|
|
|
|
init(x: Int) { // 构造函数
|
|
|
|
|
val = x
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title=""
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
constructor(val, next) {
|
|
|
|
|
this.val = (val === undefined ? 0 : val); // 节点值
|
|
|
|
|
this.next = (next === undefined ? null : next); // 指向下一节点的引用
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title=""
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
val: number;
|
|
|
|
|
next: ListNode | null;
|
|
|
|
|
constructor(val?: number, next?: ListNode | null) {
|
|
|
|
|
this.val = val === undefined ? 0 : val; // 节点值
|
|
|
|
|
this.next = next === undefined ? null : next; // 指向下一节点的引用
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title=""
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
ListNode? next; // 指向下一节点的引用
|
|
|
|
|
ListNode(this.val, [this.next]); // 构造函数
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title=""
|
|
|
|
|
use std::rc::Rc;
|
|
|
|
|
use std::cell::RefCell;
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
#[derive(Debug)]
|
|
|
|
|
struct ListNode {
|
|
|
|
|
val: i32, // 节点值
|
|
|
|
|
next: Option<Rc<RefCell<ListNode>>>, // 指向下一节点的指针
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title=""
|
|
|
|
|
/* 链表节点结构体 */
|
|
|
|
|
typedef struct ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
struct ListNode *next; // 指向下一节点的指针
|
|
|
|
|
} ListNode;
|
|
|
|
|
|
|
|
|
|
/* 构造函数 */
|
|
|
|
|
ListNode *newListNode(int val) {
|
|
|
|
|
ListNode *node;
|
|
|
|
|
node = (ListNode *) malloc(sizeof(ListNode));
|
|
|
|
|
node->val = val;
|
|
|
|
|
node->next = NULL;
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title=""
|
|
|
|
|
/* 链表节点类 */
|
|
|
|
|
// 构造方法
|
|
|
|
|
class ListNode(x: Int) {
|
|
|
|
|
val `val`: Int = x // 节点值
|
|
|
|
|
val next: ListNode? = null // 指向下一个节点的引用
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title=""
|
|
|
|
|
// 链表节点类
|
|
|
|
|
pub fn ListNode(comptime T: type) type {
|
|
|
|
|
return struct {
|
|
|
|
|
const Self = @This();
|
|
|
|
|
|
|
|
|
|
val: T = 0, // 节点值
|
|
|
|
|
next: ?*Self = null, // 指向下一节点的指针
|
|
|
|
|
|
|
|
|
|
// 构造函数
|
|
|
|
|
pub fn init(self: *Self, x: i32) void {
|
|
|
|
|
self.val = x;
|
|
|
|
|
self.next = null;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 链表常用操作
|
|
|
|
|
|
|
|
|
|
### 初始化链表
|
|
|
|
|
|
|
|
|
|
建立链表分为两步,第一步是初始化各个节点对象,第二步是构建节点之间的引用关系。初始化完成后,我们就可以从链表的头节点出发,通过引用指向 `next` 依次访问所有节点。
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="linked_list.py"
|
|
|
|
|
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
|
|
|
|
|
# 初始化各个节点
|
|
|
|
|
n0 = ListNode(1)
|
|
|
|
|
n1 = ListNode(3)
|
|
|
|
|
n2 = ListNode(2)
|
|
|
|
|
n3 = ListNode(5)
|
|
|
|
|
n4 = ListNode(4)
|
|
|
|
|
# 构建节点之间的引用
|
|
|
|
|
n0.next = n1
|
|
|
|
|
n1.next = n2
|
|
|
|
|
n2.next = n3
|
|
|
|
|
n3.next = n4
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="linked_list.cpp"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
ListNode* n0 = new ListNode(1);
|
|
|
|
|
ListNode* n1 = new ListNode(3);
|
|
|
|
|
ListNode* n2 = new ListNode(2);
|
|
|
|
|
ListNode* n3 = new ListNode(5);
|
|
|
|
|
ListNode* n4 = new ListNode(4);
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0->next = n1;
|
|
|
|
|
n1->next = n2;
|
|
|
|
|
n2->next = n3;
|
|
|
|
|
n3->next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="linked_list.java"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
ListNode n0 = new ListNode(1);
|
|
|
|
|
ListNode n1 = new ListNode(3);
|
|
|
|
|
ListNode n2 = new ListNode(2);
|
|
|
|
|
ListNode n3 = new ListNode(5);
|
|
|
|
|
ListNode n4 = new ListNode(4);
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = n1;
|
|
|
|
|
n1.next = n2;
|
|
|
|
|
n2.next = n3;
|
|
|
|
|
n3.next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="linked_list.cs"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
ListNode n0 = new(1);
|
|
|
|
|
ListNode n1 = new(3);
|
|
|
|
|
ListNode n2 = new(2);
|
|
|
|
|
ListNode n3 = new(5);
|
|
|
|
|
ListNode n4 = new(4);
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = n1;
|
|
|
|
|
n1.next = n2;
|
|
|
|
|
n2.next = n3;
|
|
|
|
|
n3.next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="linked_list.go"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
n0 := NewListNode(1)
|
|
|
|
|
n1 := NewListNode(3)
|
|
|
|
|
n2 := NewListNode(2)
|
|
|
|
|
n3 := NewListNode(5)
|
|
|
|
|
n4 := NewListNode(4)
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.Next = n1
|
|
|
|
|
n1.Next = n2
|
|
|
|
|
n2.Next = n3
|
|
|
|
|
n3.Next = n4
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="linked_list.swift"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
let n0 = ListNode(x: 1)
|
|
|
|
|
let n1 = ListNode(x: 3)
|
|
|
|
|
let n2 = ListNode(x: 2)
|
|
|
|
|
let n3 = ListNode(x: 5)
|
|
|
|
|
let n4 = ListNode(x: 4)
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = n1
|
|
|
|
|
n1.next = n2
|
|
|
|
|
n2.next = n3
|
|
|
|
|
n3.next = n4
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="linked_list.js"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
const n0 = new ListNode(1);
|
|
|
|
|
const n1 = new ListNode(3);
|
|
|
|
|
const n2 = new ListNode(2);
|
|
|
|
|
const n3 = new ListNode(5);
|
|
|
|
|
const n4 = new ListNode(4);
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = n1;
|
|
|
|
|
n1.next = n2;
|
|
|
|
|
n2.next = n3;
|
|
|
|
|
n3.next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="linked_list.ts"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
const n0 = new ListNode(1);
|
|
|
|
|
const n1 = new ListNode(3);
|
|
|
|
|
const n2 = new ListNode(2);
|
|
|
|
|
const n3 = new ListNode(5);
|
|
|
|
|
const n4 = new ListNode(4);
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = n1;
|
|
|
|
|
n1.next = n2;
|
|
|
|
|
n2.next = n3;
|
|
|
|
|
n3.next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="linked_list.dart"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */\
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
ListNode n0 = ListNode(1);
|
|
|
|
|
ListNode n1 = ListNode(3);
|
|
|
|
|
ListNode n2 = ListNode(2);
|
|
|
|
|
ListNode n3 = ListNode(5);
|
|
|
|
|
ListNode n4 = ListNode(4);
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = n1;
|
|
|
|
|
n1.next = n2;
|
|
|
|
|
n2.next = n3;
|
|
|
|
|
n3.next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="linked_list.rs"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
let n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));
|
|
|
|
|
let n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));
|
|
|
|
|
let n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));
|
|
|
|
|
let n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));
|
|
|
|
|
let n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));
|
|
|
|
|
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.borrow_mut().next = Some(n1.clone());
|
|
|
|
|
n1.borrow_mut().next = Some(n2.clone());
|
|
|
|
|
n2.borrow_mut().next = Some(n3.clone());
|
|
|
|
|
n3.borrow_mut().next = Some(n4.clone());
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="linked_list.c"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
ListNode* n0 = newListNode(1);
|
|
|
|
|
ListNode* n1 = newListNode(3);
|
|
|
|
|
ListNode* n2 = newListNode(2);
|
|
|
|
|
ListNode* n3 = newListNode(5);
|
|
|
|
|
ListNode* n4 = newListNode(4);
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0->next = n1;
|
|
|
|
|
n1->next = n2;
|
|
|
|
|
n2->next = n3;
|
|
|
|
|
n3->next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title="linked_list.kt"
|
|
|
|
|
/* 初始化链表 1 -> 3 -> 2 -> 5 -> 4 */
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
val n0 = ListNode(1)
|
|
|
|
|
val n1 = ListNode(3)
|
|
|
|
|
val n2 = ListNode(2)
|
|
|
|
|
val n3 = ListNode(5)
|
|
|
|
|
val n4 = ListNode(4)
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = n1;
|
|
|
|
|
n1.next = n2;
|
|
|
|
|
n2.next = n3;
|
|
|
|
|
n3.next = n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="linked_list.zig"
|
|
|
|
|
// 初始化链表
|
|
|
|
|
// 初始化各个节点
|
|
|
|
|
var n0 = inc.ListNode(i32){.val = 1};
|
|
|
|
|
var n1 = inc.ListNode(i32){.val = 3};
|
|
|
|
|
var n2 = inc.ListNode(i32){.val = 2};
|
|
|
|
|
var n3 = inc.ListNode(i32){.val = 5};
|
|
|
|
|
var n4 = inc.ListNode(i32){.val = 4};
|
|
|
|
|
// 构建节点之间的引用
|
|
|
|
|
n0.next = &n1;
|
|
|
|
|
n1.next = &n2;
|
|
|
|
|
n2.next = &n3;
|
|
|
|
|
n3.next = &n4;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
??? pythontutor "可视化运行"
|
|
|
|
|
|
|
|
|
|
https://pythontutor.com/render.html#code=class%20ListNode%3A%0A%20%20%20%20%22%22%22%E9%93%BE%E8%A1%A8%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.next%3A%20ListNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%90%8E%E7%BB%A7%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E9%93%BE%E8%A1%A8%201%20-%3E%203%20-%3E%202%20-%3E%205%20-%3E%204%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%90%84%E4%B8%AA%E8%8A%82%E7%82%B9%0A%20%20%20%20n0%20%3D%20ListNode%281%29%0A%20%20%20%20n1%20%3D%20ListNode%283%29%0A%20%20%20%20n2%20%3D%20ListNode%282%29%0A%20%20%20%20n3%20%3D%20ListNode%285%29%0A%20%20%20%20n4%20%3D%20ListNode%284%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%0A%20%20%20%20n0.next%20%3D%20n1%0A%20%20%20%20n1.next%20%3D%20n2%0A%20%20%20%20n2.next%20%3D%20n3%0A%20%20%20%20n3.next%20%3D%20n4&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
|
|
|
|
|
|
|
|
|
|
数组整体是一个变量,比如数组 `nums` 包含元素 `nums[0]` 和 `nums[1]` 等,而链表是由多个独立的节点对象组成的。**我们通常将头节点当作链表的代称**,比如以上代码中的链表可记作链表 `n0` 。
|
|
|
|
|
|
|
|
|
|
### 插入节点
|
|
|
|
|
|
|
|
|
|
在链表中插入节点非常容易。如下图所示,假设我们想在相邻的两个节点 `n0` 和 `n1` 之间插入一个新节点 `P` ,**则只需改变两个节点引用(指针)即可**,时间复杂度为 $O(1)$ 。
|
|
|
|
|
|
|
|
|
|
相比之下,在数组中插入元素的时间复杂度为 $O(n)$ ,在大数据量下的效率较低。
|
|
|
|
|
|
|
|
|
|
![链表插入节点示例](linked_list.assets/linkedlist_insert_node.png)
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{linked_list}-[class]{}-[func]{insert}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 删除节点
|
|
|
|
|
|
|
|
|
|
如下图所示,在链表中删除节点也非常方便,**只需改变一个节点的引用(指针)即可**。
|
|
|
|
|
|
|
|
|
|
请注意,尽管在删除操作完成后节点 `P` 仍然指向 `n1` ,但实际上遍历此链表已经无法访问到 `P` ,这意味着 `P` 已经不再属于该链表了。
|
|
|
|
|
|
|
|
|
|
![链表删除节点](linked_list.assets/linkedlist_remove_node.png)
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{linked_list}-[class]{}-[func]{remove}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 访问节点
|
|
|
|
|
|
|
|
|
|
**在链表中访问节点的效率较低**。如上一节所述,我们可以在 $O(1)$ 时间下访问数组中的任意元素。链表则不然,程序需要从头节点出发,逐个向后遍历,直至找到目标节点。也就是说,访问链表的第 $i$ 个节点需要循环 $i - 1$ 轮,时间复杂度为 $O(n)$ 。
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{linked_list}-[class]{}-[func]{access}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 查找节点
|
|
|
|
|
|
|
|
|
|
遍历链表,查找其中值为 `target` 的节点,输出该节点在链表中的索引。此过程也属于线性查找。代码如下所示:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{linked_list}-[class]{}-[func]{find}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 数组 vs. 链表
|
|
|
|
|
|
|
|
|
|
下表总结了数组和链表的各项特点并对比了操作效率。由于它们采用两种相反的存储策略,因此各种性质和操作效率也呈现对立的特点。
|
|
|
|
|
|
|
|
|
|
<p align="center"> 表 <id> 数组与链表的效率对比 </p>
|
|
|
|
|
|
|
|
|
|
| | 数组 | 链表 |
|
|
|
|
|
| -------- | ------------------------------ | -------------- |
|
|
|
|
|
| 存储方式 | 连续内存空间 | 分散内存空间 |
|
|
|
|
|
| 容量扩展 | 长度不可变 | 可灵活扩展 |
|
|
|
|
|
| 内存效率 | 元素占用内存少、但可能浪费空间 | 元素占用内存多 |
|
|
|
|
|
| 访问元素 | $O(1)$ | $O(n)$ |
|
|
|
|
|
| 添加元素 | $O(n)$ | $O(1)$ |
|
|
|
|
|
| 删除元素 | $O(n)$ | $O(1)$ |
|
|
|
|
|
|
|
|
|
|
## 常见链表类型
|
|
|
|
|
|
|
|
|
|
如下图所示,常见的链表类型包括三种。
|
|
|
|
|
|
|
|
|
|
- **单向链表**:即前面介绍的普通链表。单向链表的节点包含值和指向下一节点的引用两项数据。我们将首个节点称为头节点,将最后一个节点称为尾节点,尾节点指向空 `None` 。
|
|
|
|
|
- **环形链表**:如果我们令单向链表的尾节点指向头节点(首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。
|
|
|
|
|
- **双向链表**:与单向链表相比,双向链表记录了两个方向的引用。双向链表的节点定义同时包含指向后继节点(下一个节点)和前驱节点(上一个节点)的引用(指针)。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title=""
|
|
|
|
|
class ListNode:
|
|
|
|
|
"""双向链表节点类"""
|
|
|
|
|
def __init__(self, val: int):
|
|
|
|
|
self.val: int = val # 节点值
|
|
|
|
|
self.next: ListNode | None = None # 指向后继节点的引用
|
|
|
|
|
self.prev: ListNode | None = None # 指向前驱节点的引用
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title=""
|
|
|
|
|
/* 双向链表节点结构体 */
|
|
|
|
|
struct ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
ListNode *next; // 指向后继节点的指针
|
|
|
|
|
ListNode *prev; // 指向前驱节点的指针
|
|
|
|
|
ListNode(int x) : val(x), next(nullptr), prev(nullptr) {} // 构造函数
|
|
|
|
|
};
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title=""
|
|
|
|
|
/* 双向链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
ListNode next; // 指向后继节点的引用
|
|
|
|
|
ListNode prev; // 指向前驱节点的引用
|
|
|
|
|
ListNode(int x) { val = x; } // 构造函数
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title=""
|
|
|
|
|
/* 双向链表节点类 */
|
|
|
|
|
class ListNode(int x) { // 构造函数
|
|
|
|
|
int val = x; // 节点值
|
|
|
|
|
ListNode next; // 指向后继节点的引用
|
|
|
|
|
ListNode prev; // 指向前驱节点的引用
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title=""
|
|
|
|
|
/* 双向链表节点结构体 */
|
|
|
|
|
type DoublyListNode struct {
|
|
|
|
|
Val int // 节点值
|
|
|
|
|
Next *DoublyListNode // 指向后继节点的指针
|
|
|
|
|
Prev *DoublyListNode // 指向前驱节点的指针
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NewDoublyListNode 初始化
|
|
|
|
|
func NewDoublyListNode(val int) *DoublyListNode {
|
|
|
|
|
return &DoublyListNode{
|
|
|
|
|
Val: val,
|
|
|
|
|
Next: nil,
|
|
|
|
|
Prev: nil,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title=""
|
|
|
|
|
/* 双向链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
var val: Int // 节点值
|
|
|
|
|
var next: ListNode? // 指向后继节点的引用
|
|
|
|
|
var prev: ListNode? // 指向前驱节点的引用
|
|
|
|
|
|
|
|
|
|
init(x: Int) { // 构造函数
|
|
|
|
|
val = x
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title=""
|
|
|
|
|
/* 双向链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
constructor(val, next, prev) {
|
|
|
|
|
this.val = val === undefined ? 0 : val; // 节点值
|
|
|
|
|
this.next = next === undefined ? null : next; // 指向后继节点的引用
|
|
|
|
|
this.prev = prev === undefined ? null : prev; // 指向前驱节点的引用
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title=""
|
|
|
|
|
/* 双向链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
val: number;
|
|
|
|
|
next: ListNode | null;
|
|
|
|
|
prev: ListNode | null;
|
|
|
|
|
constructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {
|
|
|
|
|
this.val = val === undefined ? 0 : val; // 节点值
|
|
|
|
|
this.next = next === undefined ? null : next; // 指向后继节点的引用
|
|
|
|
|
this.prev = prev === undefined ? null : prev; // 指向前驱节点的引用
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title=""
|
|
|
|
|
/* 双向链表节点类 */
|
|
|
|
|
class ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
ListNode next; // 指向后继节点的引用
|
|
|
|
|
ListNode prev; // 指向前驱节点的引用
|
|
|
|
|
ListNode(this.val, [this.next, this.prev]); // 构造函数
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title=""
|
|
|
|
|
use std::rc::Rc;
|
|
|
|
|
use std::cell::RefCell;
|
|
|
|
|
|
|
|
|
|
/* 双向链表节点类型 */
|
|
|
|
|
#[derive(Debug)]
|
|
|
|
|
struct ListNode {
|
|
|
|
|
val: i32, // 节点值
|
|
|
|
|
next: Option<Rc<RefCell<ListNode>>>, // 指向后继节点的指针
|
|
|
|
|
prev: Option<Rc<RefCell<ListNode>>>, // 指向前驱节点的指针
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 构造函数 */
|
|
|
|
|
impl ListNode {
|
|
|
|
|
fn new(val: i32) -> Self {
|
|
|
|
|
ListNode {
|
|
|
|
|
val,
|
|
|
|
|
next: None,
|
|
|
|
|
prev: None,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title=""
|
|
|
|
|
/* 双向链表节点结构体 */
|
|
|
|
|
typedef struct ListNode {
|
|
|
|
|
int val; // 节点值
|
|
|
|
|
struct ListNode *next; // 指向后继节点的指针
|
|
|
|
|
struct ListNode *prev; // 指向前驱节点的指针
|
|
|
|
|
} ListNode;
|
|
|
|
|
|
|
|
|
|
/* 构造函数 */
|
|
|
|
|
ListNode *newListNode(int val) {
|
|
|
|
|
ListNode *node;
|
|
|
|
|
node = (ListNode *) malloc(sizeof(ListNode));
|
|
|
|
|
node->val = val;
|
|
|
|
|
node->next = NULL;
|
|
|
|
|
node->prev = NULL;
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title=""
|
|
|
|
|
/* 双向链表节点类 */
|
|
|
|
|
// 构造方法
|
|
|
|
|
class ListNode(x: Int) {
|
|
|
|
|
val `val`: Int = x // 节点值
|
|
|
|
|
val next: ListNode? = null // 指向后继节点的引用
|
|
|
|
|
val prev: ListNode? = null // 指向前驱节点的引用
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title=""
|
|
|
|
|
// 双向链表节点类
|
|
|
|
|
pub fn ListNode(comptime T: type) type {
|
|
|
|
|
return struct {
|
|
|
|
|
const Self = @This();
|
|
|
|
|
|
|
|
|
|
val: T = 0, // 节点值
|
|
|
|
|
next: ?*Self = null, // 指向后继节点的指针
|
|
|
|
|
prev: ?*Self = null, // 指向前驱节点的指针
|
|
|
|
|
|
|
|
|
|
// 构造函数
|
|
|
|
|
pub fn init(self: *Self, x: i32) void {
|
|
|
|
|
self.val = x;
|
|
|
|
|
self.next = null;
|
|
|
|
|
self.prev = null;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
![常见链表种类](linked_list.assets/linkedlist_common_types.png)
|
|
|
|
|
|
|
|
|
|
## 链表典型应用
|
|
|
|
|
|
|
|
|
|
单向链表通常用于实现栈、队列、哈希表和图等数据结构。
|
|
|
|
|
|
|
|
|
|
- **栈与队列**:当插入和删除操作都在链表的一端进行时,它表现出先进后出的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
|
|
|
|
|
- **哈希表**:链式地址是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
|
|
|
|
|
- **图**:邻接表是表示图的一种常用方式,其中图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
|
|
|
|
|
|
|
|
|
|
双向链表常用于需要快速查找前一个和后一个元素的场景。
|
|
|
|
|
|
|
|
|
|
- **高级数据结构**:比如在红黑树、B 树中,我们需要访问节点的父节点,这可以通过在节点中保存一个指向父节点的引用来实现,类似于双向链表。
|
|
|
|
|
- **浏览器历史**:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
|
|
|
|
|
- **LRU 算法**:在缓存淘汰(LRU)算法中,我们需要快速找到最近最少使用的数据,以及支持快速添加和删除节点。这时候使用双向链表就非常合适。
|
|
|
|
|
|
|
|
|
|
环形链表常用于需要周期性操作的场景,比如操作系统的资源调度。
|
|
|
|
|
|
|
|
|
|
- **时间片轮转调度算法**:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循环操作可以通过环形链表来实现。
|
|
|
|
|
- **数据缓冲区**:在某些数据缓冲区的实现中,也可能会使用环形链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个环形链表,以便实现无缝播放。
|