|
|
|
|
# 堆
|
|
|
|
|
|
|
|
|
|
「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如下图所示。
|
|
|
|
|
|
|
|
|
|
- 「大顶堆 max heap」:任意节点的值 $\geq$ 其子节点的值。
|
|
|
|
|
- 「小顶堆 min heap」:任意节点的值 $\leq$ 其子节点的值。
|
|
|
|
|
|
|
|
|
|
![小顶堆与大顶堆](heap.assets/min_heap_and_max_heap.png)
|
|
|
|
|
|
|
|
|
|
堆作为完全二叉树的一个特例,具有以下特性。
|
|
|
|
|
|
|
|
|
|
- 最底层节点靠左填充,其他层的节点都被填满。
|
|
|
|
|
- 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
|
|
|
|
|
- 对于大顶堆(小顶堆),堆顶元素(根节点)的值分别是最大(最小)的。
|
|
|
|
|
|
|
|
|
|
## 堆常用操作
|
|
|
|
|
|
|
|
|
|
需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。
|
|
|
|
|
|
|
|
|
|
实际上,**堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列**。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本书对两者不做特别区分,统一称作“堆”。
|
|
|
|
|
|
|
|
|
|
堆的常用操作见下表,方法名需要根据编程语言来确定。
|
|
|
|
|
|
|
|
|
|
<p align="center"> 表 <id> 堆的操作效率 </p>
|
|
|
|
|
|
|
|
|
|
| 方法名 | 描述 | 时间复杂度 |
|
|
|
|
|
| --------- | -------------------------------------------- | ----------- |
|
|
|
|
|
| push() | 元素入堆 | $O(\log n)$ |
|
|
|
|
|
| pop() | 堆顶元素出堆 | $O(\log n)$ |
|
|
|
|
|
| peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | $O(1)$ |
|
|
|
|
|
| size() | 获取堆的元素数量 | $O(1)$ |
|
|
|
|
|
| isEmpty() | 判断堆是否为空 | $O(1)$ |
|
|
|
|
|
|
|
|
|
|
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
|
|
|
|
|
|
|
|
|
|
类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 `flag` 或修改 `Comparator` 实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="heap.py"
|
|
|
|
|
# 初始化小顶堆
|
|
|
|
|
min_heap, flag = [], 1
|
|
|
|
|
# 初始化大顶堆
|
|
|
|
|
max_heap, flag = [], -1
|
|
|
|
|
|
|
|
|
|
# Python 的 heapq 模块默认实现小顶堆
|
|
|
|
|
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
|
|
|
|
|
# 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆
|
|
|
|
|
|
|
|
|
|
# 元素入堆
|
|
|
|
|
heapq.heappush(max_heap, flag * 1)
|
|
|
|
|
heapq.heappush(max_heap, flag * 3)
|
|
|
|
|
heapq.heappush(max_heap, flag * 2)
|
|
|
|
|
heapq.heappush(max_heap, flag * 5)
|
|
|
|
|
heapq.heappush(max_heap, flag * 4)
|
|
|
|
|
|
|
|
|
|
# 获取堆顶元素
|
|
|
|
|
peek: int = flag * max_heap[0] # 5
|
|
|
|
|
|
|
|
|
|
# 堆顶元素出堆
|
|
|
|
|
# 出堆元素会形成一个从大到小的序列
|
|
|
|
|
val = flag * heapq.heappop(max_heap) # 5
|
|
|
|
|
val = flag * heapq.heappop(max_heap) # 4
|
|
|
|
|
val = flag * heapq.heappop(max_heap) # 3
|
|
|
|
|
val = flag * heapq.heappop(max_heap) # 2
|
|
|
|
|
val = flag * heapq.heappop(max_heap) # 1
|
|
|
|
|
|
|
|
|
|
# 获取堆大小
|
|
|
|
|
size: int = len(max_heap)
|
|
|
|
|
|
|
|
|
|
# 判断堆是否为空
|
|
|
|
|
is_empty: bool = not max_heap
|
|
|
|
|
|
|
|
|
|
# 输入列表并建堆
|
|
|
|
|
min_heap: list[int] = [1, 3, 2, 5, 4]
|
|
|
|
|
heapq.heapify(min_heap)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="heap.cpp"
|
|
|
|
|
/* 初始化堆 */
|
|
|
|
|
// 初始化小顶堆
|
|
|
|
|
priority_queue<int, vector<int>, greater<int>> minHeap;
|
|
|
|
|
// 初始化大顶堆
|
|
|
|
|
priority_queue<int, vector<int>, less<int>> maxHeap;
|
|
|
|
|
|
|
|
|
|
/* 元素入堆 */
|
|
|
|
|
maxHeap.push(1);
|
|
|
|
|
maxHeap.push(3);
|
|
|
|
|
maxHeap.push(2);
|
|
|
|
|
maxHeap.push(5);
|
|
|
|
|
maxHeap.push(4);
|
|
|
|
|
|
|
|
|
|
/* 获取堆顶元素 */
|
|
|
|
|
int peek = maxHeap.top(); // 5
|
|
|
|
|
|
|
|
|
|
/* 堆顶元素出堆 */
|
|
|
|
|
// 出堆元素会形成一个从大到小的序列
|
|
|
|
|
maxHeap.pop(); // 5
|
|
|
|
|
maxHeap.pop(); // 4
|
|
|
|
|
maxHeap.pop(); // 3
|
|
|
|
|
maxHeap.pop(); // 2
|
|
|
|
|
maxHeap.pop(); // 1
|
|
|
|
|
|
|
|
|
|
/* 获取堆大小 */
|
|
|
|
|
int size = maxHeap.size();
|
|
|
|
|
|
|
|
|
|
/* 判断堆是否为空 */
|
|
|
|
|
bool isEmpty = maxHeap.empty();
|
|
|
|
|
|
|
|
|
|
/* 输入列表并建堆 */
|
|
|
|
|
vector<int> input{1, 3, 2, 5, 4};
|
|
|
|
|
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="heap.java"
|
|
|
|
|
/* 初始化堆 */
|
|
|
|
|
// 初始化小顶堆
|
|
|
|
|
Queue<Integer> minHeap = new PriorityQueue<>();
|
|
|
|
|
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
|
|
|
|
|
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
|
|
|
|
|
|
|
|
|
|
/* 元素入堆 */
|
|
|
|
|
maxHeap.offer(1);
|
|
|
|
|
maxHeap.offer(3);
|
|
|
|
|
maxHeap.offer(2);
|
|
|
|
|
maxHeap.offer(5);
|
|
|
|
|
maxHeap.offer(4);
|
|
|
|
|
|
|
|
|
|
/* 获取堆顶元素 */
|
|
|
|
|
int peek = maxHeap.peek(); // 5
|
|
|
|
|
|
|
|
|
|
/* 堆顶元素出堆 */
|
|
|
|
|
// 出堆元素会形成一个从大到小的序列
|
|
|
|
|
peek = maxHeap.poll(); // 5
|
|
|
|
|
peek = maxHeap.poll(); // 4
|
|
|
|
|
peek = maxHeap.poll(); // 3
|
|
|
|
|
peek = maxHeap.poll(); // 2
|
|
|
|
|
peek = maxHeap.poll(); // 1
|
|
|
|
|
|
|
|
|
|
/* 获取堆大小 */
|
|
|
|
|
int size = maxHeap.size();
|
|
|
|
|
|
|
|
|
|
/* 判断堆是否为空 */
|
|
|
|
|
boolean isEmpty = maxHeap.isEmpty();
|
|
|
|
|
|
|
|
|
|
/* 输入列表并建堆 */
|
|
|
|
|
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="heap.cs"
|
|
|
|
|
/* 初始化堆 */
|
|
|
|
|
// 初始化小顶堆
|
|
|
|
|
PriorityQueue<int, int> minHeap = new();
|
|
|
|
|
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
|
|
|
|
|
PriorityQueue<int, int> maxHeap = new(Comparer<int>.Create((x, y) => y - x));
|
|
|
|
|
|
|
|
|
|
/* 元素入堆 */
|
|
|
|
|
maxHeap.Enqueue(1, 1);
|
|
|
|
|
maxHeap.Enqueue(3, 3);
|
|
|
|
|
maxHeap.Enqueue(2, 2);
|
|
|
|
|
maxHeap.Enqueue(5, 5);
|
|
|
|
|
maxHeap.Enqueue(4, 4);
|
|
|
|
|
|
|
|
|
|
/* 获取堆顶元素 */
|
|
|
|
|
int peek = maxHeap.Peek();//5
|
|
|
|
|
|
|
|
|
|
/* 堆顶元素出堆 */
|
|
|
|
|
// 出堆元素会形成一个从大到小的序列
|
|
|
|
|
peek = maxHeap.Dequeue(); // 5
|
|
|
|
|
peek = maxHeap.Dequeue(); // 4
|
|
|
|
|
peek = maxHeap.Dequeue(); // 3
|
|
|
|
|
peek = maxHeap.Dequeue(); // 2
|
|
|
|
|
peek = maxHeap.Dequeue(); // 1
|
|
|
|
|
|
|
|
|
|
/* 获取堆大小 */
|
|
|
|
|
int size = maxHeap.Count;
|
|
|
|
|
|
|
|
|
|
/* 判断堆是否为空 */
|
|
|
|
|
bool isEmpty = maxHeap.Count == 0;
|
|
|
|
|
|
|
|
|
|
/* 输入列表并建堆 */
|
|
|
|
|
minHeap = new PriorityQueue<int, int>([(1, 1), (3, 3), (2, 2), (5, 5), (4, 4)]);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="heap.go"
|
|
|
|
|
// Go 语言中可以通过实现 heap.Interface 来构建整数大顶堆
|
|
|
|
|
// 实现 heap.Interface 需要同时实现 sort.Interface
|
|
|
|
|
type intHeap []any
|
|
|
|
|
|
|
|
|
|
// Push heap.Interface 的方法,实现推入元素到堆
|
|
|
|
|
func (h *intHeap) Push(x any) {
|
|
|
|
|
// Push 和 Pop 使用 pointer receiver 作为参数
|
|
|
|
|
// 因为它们不仅会对切片的内容进行调整,还会修改切片的长度。
|
|
|
|
|
*h = append(*h, x.(int))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Pop heap.Interface 的方法,实现弹出堆顶元素
|
|
|
|
|
func (h *intHeap) Pop() any {
|
|
|
|
|
// 待出堆元素存放在最后
|
|
|
|
|
last := (*h)[len(*h)-1]
|
|
|
|
|
*h = (*h)[:len(*h)-1]
|
|
|
|
|
return last
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Len sort.Interface 的方法
|
|
|
|
|
func (h *intHeap) Len() int {
|
|
|
|
|
return len(*h)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Less sort.Interface 的方法
|
|
|
|
|
func (h *intHeap) Less(i, j int) bool {
|
|
|
|
|
// 如果实现小顶堆,则需要调整为小于号
|
|
|
|
|
return (*h)[i].(int) > (*h)[j].(int)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Swap sort.Interface 的方法
|
|
|
|
|
func (h *intHeap) Swap(i, j int) {
|
|
|
|
|
(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Top 获取堆顶元素
|
|
|
|
|
func (h *intHeap) Top() any {
|
|
|
|
|
return (*h)[0]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Driver Code */
|
|
|
|
|
func TestHeap(t *testing.T) {
|
|
|
|
|
/* 初始化堆 */
|
|
|
|
|
// 初始化大顶堆
|
|
|
|
|
maxHeap := &intHeap{}
|
|
|
|
|
heap.Init(maxHeap)
|
|
|
|
|
/* 元素入堆 */
|
|
|
|
|
// 调用 heap.Interface 的方法,来添加元素
|
|
|
|
|
heap.Push(maxHeap, 1)
|
|
|
|
|
heap.Push(maxHeap, 3)
|
|
|
|
|
heap.Push(maxHeap, 2)
|
|
|
|
|
heap.Push(maxHeap, 4)
|
|
|
|
|
heap.Push(maxHeap, 5)
|
|
|
|
|
|
|
|
|
|
/* 获取堆顶元素 */
|
|
|
|
|
top := maxHeap.Top()
|
|
|
|
|
fmt.Printf("堆顶元素为 %d\n", top)
|
|
|
|
|
|
|
|
|
|
/* 堆顶元素出堆 */
|
|
|
|
|
// 调用 heap.Interface 的方法,来移除元素
|
|
|
|
|
heap.Pop(maxHeap) // 5
|
|
|
|
|
heap.Pop(maxHeap) // 4
|
|
|
|
|
heap.Pop(maxHeap) // 3
|
|
|
|
|
heap.Pop(maxHeap) // 2
|
|
|
|
|
heap.Pop(maxHeap) // 1
|
|
|
|
|
|
|
|
|
|
/* 获取堆大小 */
|
|
|
|
|
size := len(*maxHeap)
|
|
|
|
|
fmt.Printf("堆元素数量为 %d\n", size)
|
|
|
|
|
|
|
|
|
|
/* 判断堆是否为空 */
|
|
|
|
|
isEmpty := len(*maxHeap) == 0
|
|
|
|
|
fmt.Printf("堆是否为空 %t\n", isEmpty)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="heap.swift"
|
|
|
|
|
// Swift 未提供内置 Heap 类
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="heap.js"
|
|
|
|
|
// JavaScript 未提供内置 Heap 类
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="heap.ts"
|
|
|
|
|
// TypeScript 未提供内置 Heap 类
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="heap.dart"
|
|
|
|
|
// Dart 未提供内置 Heap 类
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="heap.rs"
|
|
|
|
|
use std::collections::BinaryHeap;
|
|
|
|
|
use std::cmp::Reverse;
|
|
|
|
|
|
|
|
|
|
/* 初始化堆 */
|
|
|
|
|
// 初始化小顶堆
|
|
|
|
|
let mut min_heap = BinaryHeap::<Reverse<i32>>::new();
|
|
|
|
|
// 初始化大顶堆
|
|
|
|
|
let mut max_heap = BinaryHeap::new();
|
|
|
|
|
|
|
|
|
|
/* 元素入堆 */
|
|
|
|
|
max_heap.push(1);
|
|
|
|
|
max_heap.push(3);
|
|
|
|
|
max_heap.push(2);
|
|
|
|
|
max_heap.push(5);
|
|
|
|
|
max_heap.push(4);
|
|
|
|
|
|
|
|
|
|
/* 获取堆顶元素 */
|
|
|
|
|
let peek = max_heap.peek().unwrap(); // 5
|
|
|
|
|
|
|
|
|
|
/* 堆顶元素出堆 */
|
|
|
|
|
// 出堆元素会形成一个从大到小的序列
|
|
|
|
|
let peek = max_heap.pop().unwrap(); // 5
|
|
|
|
|
let peek = max_heap.pop().unwrap(); // 4
|
|
|
|
|
let peek = max_heap.pop().unwrap(); // 3
|
|
|
|
|
let peek = max_heap.pop().unwrap(); // 2
|
|
|
|
|
let peek = max_heap.pop().unwrap(); // 1
|
|
|
|
|
|
|
|
|
|
/* 获取堆大小 */
|
|
|
|
|
let size = max_heap.len();
|
|
|
|
|
|
|
|
|
|
/* 判断堆是否为空 */
|
|
|
|
|
let is_empty = max_heap.is_empty();
|
|
|
|
|
|
|
|
|
|
/* 输入列表并建堆 */
|
|
|
|
|
let min_heap = BinaryHeap::from(vec![Reverse(1), Reverse(3), Reverse(2), Reverse(5), Reverse(4)]);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="heap.c"
|
|
|
|
|
// C 未提供内置 Heap 类
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="heap.zig"
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 堆的实现
|
|
|
|
|
|
|
|
|
|
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 $\geq$ 替换为 $\leq$ )。感兴趣的读者可以自行实现。
|
|
|
|
|
|
|
|
|
|
### 堆的存储与表示
|
|
|
|
|
|
|
|
|
|
“二叉树”章节讲过,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,**因此我们将采用数组来存储堆**。
|
|
|
|
|
|
|
|
|
|
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。**节点指针通过索引映射公式来实现**。
|
|
|
|
|
|
|
|
|
|
如下图所示,给定索引 $i$ ,其左子节点索引为 $2i + 1$ ,右子节点索引为 $2i + 2$ ,父节点索引为 $(i - 1) / 2$(向下整除)。当索引越界时,表示空节点或节点不存在。
|
|
|
|
|
|
|
|
|
|
![堆的表示与存储](heap.assets/representation_of_heap.png)
|
|
|
|
|
|
|
|
|
|
我们可以将索引映射公式封装成函数,方便后续使用:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{my_heap}-[class]{max_heap}-[func]{parent}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 访问堆顶元素
|
|
|
|
|
|
|
|
|
|
堆顶元素即为二叉树的根节点,也就是列表的首个元素:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{my_heap}-[class]{max_heap}-[func]{peek}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 元素入堆
|
|
|
|
|
|
|
|
|
|
给定元素 `val` ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,**因此需要修复从插入节点到根节点的路径上的各个节点**,这个操作被称为「堆化 heapify」。
|
|
|
|
|
|
|
|
|
|
考虑从入堆节点开始,**从底至顶执行堆化**。如下图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![元素入堆步骤](heap.assets/heap_push_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![heap_push_step2](heap.assets/heap_push_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![heap_push_step3](heap.assets/heap_push_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![heap_push_step4](heap.assets/heap_push_step4.png)
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![heap_push_step5](heap.assets/heap_push_step5.png)
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![heap_push_step6](heap.assets/heap_push_step6.png)
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![heap_push_step7](heap.assets/heap_push_step7.png)
|
|
|
|
|
|
|
|
|
|
=== "<8>"
|
|
|
|
|
![heap_push_step8](heap.assets/heap_push_step8.png)
|
|
|
|
|
|
|
|
|
|
=== "<9>"
|
|
|
|
|
![heap_push_step9](heap.assets/heap_push_step9.png)
|
|
|
|
|
|
|
|
|
|
设节点总数为 $n$ ,则树的高度为 $O(\log n)$ 。由此可知,堆化操作的循环轮数最多为 $O(\log n)$ ,**元素入堆操作的时间复杂度为 $O(\log n)$** 。代码如下所示:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{my_heap}-[class]{max_heap}-[func]{sift_up}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 堆顶元素出堆
|
|
|
|
|
|
|
|
|
|
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。
|
|
|
|
|
|
|
|
|
|
1. 交换堆顶元素与堆底元素(交换根节点与最右叶节点)。
|
|
|
|
|
2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,因此实际上删除的是原来的堆顶元素)。
|
|
|
|
|
3. 从根节点开始,**从顶至底执行堆化**。
|
|
|
|
|
|
|
|
|
|
如下图所示,**“从顶至底堆化”的操作方向与“从底至顶堆化”相反**,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![堆顶元素出堆步骤](heap.assets/heap_pop_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![heap_pop_step2](heap.assets/heap_pop_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![heap_pop_step3](heap.assets/heap_pop_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![heap_pop_step4](heap.assets/heap_pop_step4.png)
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![heap_pop_step5](heap.assets/heap_pop_step5.png)
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![heap_pop_step6](heap.assets/heap_pop_step6.png)
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![heap_pop_step7](heap.assets/heap_pop_step7.png)
|
|
|
|
|
|
|
|
|
|
=== "<8>"
|
|
|
|
|
![heap_pop_step8](heap.assets/heap_pop_step8.png)
|
|
|
|
|
|
|
|
|
|
=== "<9>"
|
|
|
|
|
![heap_pop_step9](heap.assets/heap_pop_step9.png)
|
|
|
|
|
|
|
|
|
|
=== "<10>"
|
|
|
|
|
![heap_pop_step10](heap.assets/heap_pop_step10.png)
|
|
|
|
|
|
|
|
|
|
与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 $O(\log n)$ 。代码如下所示:
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{my_heap}-[class]{max_heap}-[func]{sift_down}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 堆常见应用
|
|
|
|
|
|
|
|
|
|
- **优先队列**:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 $O(\log n)$ ,而建队操作为 $O(n)$ ,这些操作都非常高效。
|
|
|
|
|
- **堆排序**:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见“堆排序”章节。
|
|
|
|
|
- **获取最大的 $k$ 个元素**:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。
|