You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_tree/binary_tree.md

380 lines
11 KiB

---
comments: true
---
# 二叉树
「二叉树 Binary Tree」是一种非线性数据结构代表着祖先与后代之间的派生关系体现着“一分为二”的分治逻辑。类似于链表二叉树也是以结点为单位存储的结点包含「值」和两个「指针」。
=== "Java"
```java title=""
/* 链表结点类 */
class TreeNode {
int val; // 结点值
TreeNode left; // 左子结点指针
TreeNode right; // 右子结点指针
TreeNode(int x) { val = x; }
}
```
=== "C++"
```cpp title=""
/* 链表结点结构体 */
struct TreeNode {
int val; // 结点值
TreeNode *left; // 左子结点指针
TreeNode *right; // 右子结点指针
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
```
=== "Python"
```python title=""
""" 链表结点类 """
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val # 结点值
self.left = left # 左子结点指针
self.right = right # 右子结点指针
```
=== "Go"
```go title=""
""" 链表结点类 """
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
""" 结点初始化方法 """
func NewTreeNode(v int) *TreeNode {
return &TreeNode{
Left: nil,
Right: nil,
Val: v,
}
}
```
=== "JavaScript"
```js title=""
/* 链表结点类 */
function TreeNode(val, left, right) {
this.val = (val === undefined ? 0 : val); // 结点值
this.left = (left === undefined ? null : left); // 左子结点指针
this.right = (right === undefined ? null : right); // 右子结点指针
}
```
=== "TypeScript"
```typescript title=""
/* 链表结点类 */
class TreeNode {
val: number;
left: TreeNode | null;
right: TreeNode | null;
constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = val === undefined ? 0 : val; // 结点值
this.left = left === undefined ? null : left; // 左子结点指针
this.right = right === undefined ? null : right; // 右子结点指针
}
}
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
```
结点的两个指针分别指向「左子结点 Left Child Node」和「右子结点 Right Child Node」并且称该结点为两个子结点的「父结点 Parent Node」。给定二叉树某结点将左子结点以下的树称为该结点的「左子树 Left Subtree」右子树同理。
![binary_tree_definition](binary_tree.assets/binary_tree_definition.png)
2 years ago
<p align="center"> Fig. 子结点与子树 </p>
需要注意,父结点、子结点、子树是可以向下递推的。例如,如果将上图的「结点 2」看作父结点那么其左子结点和右子结点分别为「结点 4」和「结点 5」左子树和右子树分别为「结点 4 以下的树」和「结点 5 以下的树」。
## 二叉树常见术语
二叉树的术语较多,建议尽量理解并记住。后续可能遗忘,可以在需要使用时回来查看确认。
- 「根结点 Root Node」二叉树最顶层的结点其没有父结点
- 「叶结点 Leaf Node」没有子结点的结点其两个指针都指向 $\text{null}$
- 结点所处「层 Level」从顶置底依次增加根结点所处层为 1
- 结点「度 Degree」结点的子结点数量二叉树中度的范围是 0, 1, 2
- 「边 Edge」连接两个结点的边即结点指针
- 二叉树「高度」:二叉树中根结点到最远叶结点走过边的数量;
- 结点「深度 Depth」 :根结点到该结点走过边的数量;
- 结点「高度 Height」最远叶结点到该结点走过边的数量
![binary_tree_terminology](binary_tree.assets/binary_tree_terminology.png)
2 years ago
<p align="center"> Fig. 二叉树的常见术语 </p>
!!! tip "高度与深度的定义"
值得注意,我们通常将「高度」和「深度」定义为“走过边的数量”,而有些题目或教材会将其定义为“走过结点的数量”,此时高度或深度都需要 + 1 。
## 二叉树基本操作
**初始化二叉树。** 与链表类似,先初始化结点,再构建引用指向(即指针)。
=== "Java"
```java title="binary_tree.java"
// 初始化结点
TreeNode n1 = new TreeNode(1);
TreeNode n2 = new TreeNode(2);
TreeNode n3 = new TreeNode(3);
TreeNode n4 = new TreeNode(4);
TreeNode n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "C++"
```cpp title="binary_tree.cpp"
/* 初始化二叉树 */
// 初始化结点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
```
=== "Python"
```python title="binary_tree.py"
```
=== "Go"
```go title="binary_tree.go"
/* 初始化二叉树 */
// 初始化结点
n1 := NewTreeNode(1)
n2 := NewTreeNode(2)
n3 := NewTreeNode(3)
n4 := NewTreeNode(4)
n5 := NewTreeNode(5)
// 构建引用指向(即指针)
n1.Left = n2
n1.Right = n3
n2.Left = n4
n2.Right = n5
```
=== "JavaScript"
```js title="binary_tree.js"
/* 初始化二叉树 */
// 初始化结点
let n1 = new TreeNode(1),
n2 = new TreeNode(2),
n3 = new TreeNode(3),
n4 = new TreeNode(4),
n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "TypeScript"
```typescript title="binary_tree.ts"
/* 初始化二叉树 */
// 初始化结点
let n1 = new TreeNode(1),
n2 = new TreeNode(2),
n3 = new TreeNode(3),
n4 = new TreeNode(4),
n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "C"
```c title="binary_tree.c"
```
=== "C#"
```csharp title="binary_tree.cs"
```
**插入与删除结点。** 与链表类似,插入与删除结点都可以通过修改指针实现。
![binary_tree_add_remove](binary_tree.assets/binary_tree_add_remove.png)
2 years ago
<p align="center"> Fig. 在二叉树中插入与删除结点 </p>
=== "Java"
```java title="binary_tree.java"
TreeNode P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1.left = P;
P.left = n2;
// 删除结点 P
n1.left = n2;
```
=== "C++"
```cpp title="binary_tree.cpp"
/* 插入与删除结点 */
TreeNode* P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1->left = P;
P->left = n2;
// 删除结点 P
n1->left = n2;
```
=== "Python"
```python title="binary_tree.py"
```
=== "Go"
```go title="binary_tree.go"
/* 插入与删除结点 */
// 在 n1 -> n2 中间插入结点 P
p := NewTreeNode(0)
n1.Left = p
p.Left = n2
// 删除结点 P
n1.Left = n2
```
=== "JavaScript"
```js title="binary_tree.js"
/* 插入与删除结点 */
let P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1.left = P;
P.left = n2;
// 删除结点 P
n1.left = n2;
```
=== "TypeScript"
```typescript title="binary_tree.ts"
/* 插入与删除结点 */
const P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1.left = P;
P.left = n2;
// 删除结点 P
n1.left = n2;
```
=== "C"
```c title="binary_tree.c"
```
=== "C#"
```csharp title="binary_tree.cs"
```
!!! note
插入结点会改变二叉树的原有逻辑结构,删除结点往往意味着删除了该结点的所有子树。因此,二叉树中的插入与删除一般都是由一套操作配合完成的,这样才能实现有意义的操作。
## 常见二叉树类型
### 完美二叉树
「完美二叉树 Perfect Binary Tree」的所有层的结点都被完全填满。在完美二叉树中所有结点的度 = 2 ;若树高度 $= h$ ,则结点总数 $= 2^{h+1} - 1$ ,呈标准的指数级关系,反映着自然界中常见的细胞分裂。
!!! tip
在中文社区中,完美二叉树常被称为「满二叉树」,请注意与完满二叉树区分。
![perfect_binary_tree](binary_tree.assets/perfect_binary_tree.png)
### 完全二叉树
「完全二叉树 Complete Binary Tree」只有最底层的结点未被填满且最底层结点尽量靠左填充。
**完全二叉树非常适合用数组来表示**。如果按照层序遍历序列的顺序来存储,那么空结点 `null` 一定全部出现在序列的尾部,因此我们就可以不用存储这些 null 了。
![complete_binary_tree](binary_tree.assets/complete_binary_tree.png)
### 完满二叉树
「完满二叉树 Full Binary Tree」除了叶结点之外其余所有结点都有两个子结点。
![full_binary_tree](binary_tree.assets/full_binary_tree.png)
### 平衡二叉树
「平衡二叉树 Balanced Binary Tree」中任意结点的左子树和右子树的高度之差的绝对值 $\leq 1$ 。
![balanced_binary_tree](binary_tree.assets/balanced_binary_tree.png)
## 二叉树的退化
当二叉树的每层的结点都被填满时,达到「完美二叉树」;而当所有结点都偏向一边时,二叉树退化为「链表」。
- 完美二叉树是一个二叉树的“最佳状态”,可以完全发挥出二叉树“分治”的优势;
- 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 $O(n)$
![binary_tree_corner_cases](binary_tree.assets/binary_tree_corner_cases.png)
<p align="center"> Fig. 二叉树的最佳和最差结构 </p>
如下表所示,在最佳和最差结构下,二叉树的叶结点数量、结点总数、高度等达到极大或极小值。
<div class="center-table" markdown>
| | 完美二叉树 | 链表 |
| ----------------------------- | ---------- | ---------- |
| 第 $i$ 层的结点数量 | $2^{i-1}$ | $1$ |
| 树的高度为 $h$ 时的叶结点数量 | $2^h$ | $1$ |
| 树的高度为 $h$ 时的结点总数 | $2^{h+1} - 1$ | $h + 1$ |
| 树的结点总数为 $n$ 时的高度 | $\log_2 (n+1) - 1$ | $n - 1$ |
</div>