|
|
|
|
---
|
|
|
|
|
comments: true
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# 归并排序
|
|
|
|
|
|
|
|
|
|
「归并排序 Merge Sort」是算法中 “分治思想” 的典型体现,其有「划分」和「合并」两个阶段:
|
|
|
|
|
|
|
|
|
|
1. **划分:** 不断递归地 **将数组从中点位置划分开**,将长数组的排序问题转化为短数组的排序问题;
|
|
|
|
|
|
|
|
|
|
2. **合并:** 划分到子数组长度为 1 时,开始向上合并,不断将 **左 / 右两个短排序数组** 合并为 **一个长排序数组**,直至合并至原数组时完成排序;
|
|
|
|
|
|
|
|
|
|
(图)
|
|
|
|
|
|
|
|
|
|
## 算法流程
|
|
|
|
|
|
|
|
|
|
**递归划分:** 从顶至底递归地 **将数组从中点切为两个子数组** ,直至长度为 1 ;
|
|
|
|
|
|
|
|
|
|
1. 计算数组中点 `mid` ,递归划分左子数组(区间 `[left, mid]` )和右子数组(区间 `[mid + 1, right]` );
|
|
|
|
|
2. 递归执行 `1.` 步骤,直至子数组区间长度为 1 时,终止递归划分;
|
|
|
|
|
|
|
|
|
|
**回溯合并:** 从底至顶将左子数组和右子数组合并为一个 **有序数组** ;由于是从长度为 1 的子数组开始合并的,因此 **每个子数组也是有序的** ,因此合并任务本质是要 **将两个有序子数组合并为一个有序数组** ;
|
|
|
|
|
|
|
|
|
|
1. 初始化一个辅助数组 `tmp` 暂存待合并区间 `[left, right]` 内的元素,后序通过覆盖原数组 `nums` 的元素来实现合并;
|
|
|
|
|
2. 初始化指针 `i` , `j` , `k` 分别指向左子数组、右子数组、原数组的首元素;
|
|
|
|
|
3. 循环判断 `tmp[i]` 和 `tmp[j]` 的大小,将较小的先覆盖至 `nums[k]` ,指针 `i` , `j` 根据判断结果交替前进(指针 `k` 也前进),直至两个子数组都遍历完,即可完成合并。
|
|
|
|
|
|
|
|
|
|
合并代码的实现主要难点:
|
|
|
|
|
|
|
|
|
|
- **`nums` 的待合并区间为 `[left, right]`** ,而由于 `tmp` 只复制了 `nums` 该区间元素,因此 **`tmp` 对应区间为 `[0, right - left]`** 。以下代码中的 `leftStart` , `leftEnd` , `rightStart` , `rightEnd` , `i` , `j` 都是根据 `tmp` 定义的,而 `k` 是根据 `nums` 定义的。
|
|
|
|
|
- 判断 `tmp[i]` 和 `tmp[j]` 的大小的操作中,还 **需考虑当子数组遍历完成后的索引越界问题**,即 `i > leftEnd` 和 `j > rightEnd` 的情况,索引越界的优先级是最高的,例如如果左子数组已经被合并完了,那么不用继续判断,直接合并右子数组元素即可。
|
|
|
|
|
|
|
|
|
|
(动画)
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="merge_sort.java"
|
|
|
|
|
/**
|
|
|
|
|
* 合并左子数组和右子数组
|
|
|
|
|
* 左子数组区间 [left, mid]
|
|
|
|
|
* 右子数组区间 [mid + 1, right]
|
|
|
|
|
*/
|
|
|
|
|
void merge(int[] nums, int left, int mid, int right) {
|
|
|
|
|
int[] tmp = Arrays.copyOfRange(nums, left, right + 1); // 初始化辅助数组
|
|
|
|
|
int leftStart = left - left, leftEnd = mid - left, // 左子数组的起始索引和结束索引
|
|
|
|
|
rightStart = mid + 1 - left, rightEnd = right - left; // 右子数组的起始索引和结束索引
|
|
|
|
|
int i = leftStart, j = rightStart; // i,j 分别指向左子数组、右子数组的首元素
|
|
|
|
|
// 通过覆盖原数组 nums 来合并左子数组和右子数组
|
|
|
|
|
for (int k = left; k <= right; k++) {
|
|
|
|
|
// 若 “左子数组已全部合并完”,则选取右子数组元素,并且 j++
|
|
|
|
|
if (i > leftEnd)
|
|
|
|
|
nums[k] = tmp[j++];
|
|
|
|
|
// 否则,若 “右子数组已全部合并完” 或 “左子数组元素 < 右子数组元素”,则选取左子数组元素,并且 i++
|
|
|
|
|
else if (j > rightEnd || tmp[i] <= tmp[j])
|
|
|
|
|
nums[k] = tmp[i++];
|
|
|
|
|
// 否则,若 “左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
|
|
|
|
|
else
|
|
|
|
|
nums[k] = tmp[j++];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 归并排序 */
|
|
|
|
|
void mergeSort(int[] nums, int left, int right) {
|
|
|
|
|
// 终止条件
|
|
|
|
|
if (left >= right) return; // 当子数组长度为 1 时终止递归
|
|
|
|
|
// 递归划分
|
|
|
|
|
int mid = (left + right) / 2; // 计算数组中点
|
|
|
|
|
mergeSort(nums, left, mid); // 递归左子数组
|
|
|
|
|
mergeSort(nums, mid + 1, right); // 递归右子数组
|
|
|
|
|
// 回溯合并
|
|
|
|
|
merge(nums, left, mid, right);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 算法特性
|
|
|
|
|
|
|
|
|
|
- **时间复杂度 $O(n \log n)$ :** 划分形成高度为 $\log n$ 的递归树,每层合并的总操作数量为 $n$ ,总体使用 $O(n \log n)$ 时间。
|
|
|
|
|
- **空间复杂度 $O(n)$ :** 需借助辅助数组实现合并,使用 $O(n)$ 大小的额外空间;递归深度为 $\log n$ ,使用 $O(\log n)$ 大小的栈帧空间。
|
|
|
|
|
- **非原地排序:** 辅助数组需要使用 $O(n)$ 额外空间。
|
|
|
|
|
- **稳定排序:** 在合并时可保证相等元素的相对位置不变。
|
|
|
|
|
- **非自适应排序:** 对于任意输入数据,归并排序的时间复杂度皆相同。
|
|
|
|
|
|
|
|
|
|
## 链表排序 *
|
|
|
|
|
|
|
|
|
|
归并排序有一个很特别的优势,用于排序链表时有很好的性能表现,**空间复杂度可被优化至 $O(1)$** ,这是因为:
|
|
|
|
|
|
|
|
|
|
- 由于链表可仅通过改变指针来实现结点增删,因此 “将两个短有序链表合并为一个长有序链表” 无需使用额外空间,即回溯合并阶段不用像排序数组一样建立辅助数组 `tmp` ;
|
|
|
|
|
- 通过使用「迭代」代替「递归划分」,可省去递归使用的栈帧空间;
|
|
|
|
|
|
|
|
|
|
!!! quote
|
|
|
|
|
|
|
|
|
|
详情参考:[148. 排序链表](https://leetcode-cn.com/problems/sort-list/solution/sort-list-gui-bing-pai-xu-lian-biao-by-jyd/)
|
|
|
|
|
|