|
|
|
|
# 桶排序
|
|
|
|
|
|
|
|
|
|
「桶排序 Bucket Sort」是分治思想的典型体现,其通过设置一些桶,将数据平均分配到各个桶中,并在每个桶内部分别执行排序,最终根据桶之间天然的大小顺序将各个桶内元素合并,从而得到排序结果。
|
|
|
|
|
|
|
|
|
|
## 算法流程
|
|
|
|
|
|
|
|
|
|
输入一个长度为 $n$ 的数组,元素是范围 $[0, 1)$ 的浮点数,桶排序流程为:
|
|
|
|
|
|
|
|
|
|
1. 初始化 $k$ 个桶,将 $n$ 个元素分配至 $k$ 个桶中;
|
|
|
|
|
2. 对每个桶分别执行排序(本文采用编程语言的内置排序函数);
|
|
|
|
|
3. 按照桶的从小到大的顺序,合并结果;
|
|
|
|
|
|
|
|
|
|
![桶排序算法流程](bucket_sort.assets/bucket_sort_overview.png)
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="bucket_sort.java"
|
|
|
|
|
[class]{bucket_sort}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="bucket_sort.cpp"
|
|
|
|
|
[class]{}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="bucket_sort.py"
|
|
|
|
|
[class]{}-[func]{bucket_sort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="bucket_sort.go"
|
|
|
|
|
[class]{}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
|
|
|
|
```javascript title="bucket_sort.js"
|
|
|
|
|
[class]{}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
|
|
|
|
```typescript title="bucket_sort.ts"
|
|
|
|
|
[class]{}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="bucket_sort.c"
|
|
|
|
|
[class]{}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="bucket_sort.cs"
|
|
|
|
|
[class]{bucket_sort}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="bucket_sort.swift"
|
|
|
|
|
[class]{}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="bucket_sort.zig"
|
|
|
|
|
[class]{}-[func]{bucketSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
!!! note "桶排序是计数排序的一种推广"
|
|
|
|
|
|
|
|
|
|
从桶排序的角度,我们可以把计数排序中计数数组 `counter` 的每个索引想象成一个桶,将统计数量的过程想象成把各个元素分配到对应的桶中,再根据桶之间的有序性输出结果,从而实现排序。
|
|
|
|
|
|
|
|
|
|
## 算法特性
|
|
|
|
|
|
|
|
|
|
**时间复杂度 $O(n + k)$** :假设元素平均分布在各个桶内,则每个桶内元素数量为 $\frac{n}{k}$ 。假设排序单个桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 时间,则排序所有桶使用 $O(n \log\frac{n}{k})$ 时间,**当桶数量 $k$ 比较大时,时间复杂度则趋向于 $O(n)$** 。最后合并结果需要遍历 $n$ 个桶,使用 $O(k)$ 时间。
|
|
|
|
|
|
|
|
|
|
最差情况下,所有数据被分配到一个桶中,且排序算法退化至 $O(n^2)$ ,此时使用 $O(n^2)$ 时间,因此是“自适应排序”。
|
|
|
|
|
|
|
|
|
|
**空间复杂度 $O(n + k)$** :需要借助 $k$ 个桶和共 $n$ 个元素的额外空间,是“非原地排序”。
|
|
|
|
|
|
|
|
|
|
桶排序是否稳定取决于排序桶内元素的算法是否稳定。
|
|
|
|
|
|
|
|
|
|
## 如何实现平均分配
|
|
|
|
|
|
|
|
|
|
桶排序的时间复杂度理论上可以达到 $O(n)$ ,**难点是需要将元素均匀分配到各个桶中**,因为现实中的数据往往都不是均匀分布的。举个例子,假设我们想要把淘宝的所有商品根据价格范围平均分配到 10 个桶中,然而商品价格不是均匀分布的,100 元以下非常多、1000 元以上非常少;如果我们将价格区间平均划为 10 份,那么各个桶内的商品数量差距会非常大。
|
|
|
|
|
|
|
|
|
|
为了实现平均分配,我们可以先大致设置一个分界线,将数据粗略分到 3 个桶,分配完后,**再把商品较多的桶继续划分为 3 个桶,直至所有桶内元素数量大致平均为止**。此方法本质上是生成一个递归树,让叶结点的值尽量平均。当然,不一定非要划分为 3 个桶,可以根据数据特点灵活选取。
|
|
|
|
|
|
|
|
|
|
![递归划分桶](bucket_sort.assets/scatter_in_buckets_recursively.png)
|
|
|
|
|
|
|
|
|
|
如果我们提前知道商品价格的概率分布,**那么也可以根据数据概率分布来设置每个桶的价格分界线**。注意,数据分布不一定需要特意去统计,也可以根据数据特点采用某种概率模型来近似。如下图所示,我们假设商品价格服从正态分布,就可以合理设置价格区间,将商品平均分配到各个桶中。
|
|
|
|
|
|
|
|
|
|
![根据概率分布划分桶](bucket_sort.assets/scatter_in_buckets_distribution.png)
|