|
|
|
|
---
|
|
|
|
|
comments: true
|
|
|
|
|
status: new
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# 14.3. 动态规划解题思路
|
|
|
|
|
|
|
|
|
|
上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题:
|
|
|
|
|
|
|
|
|
|
1. 如何判断一个问题是不是动态规划问题?
|
|
|
|
|
2. 求解动态规划问题该从何处入手,完整步骤是什么?
|
|
|
|
|
|
|
|
|
|
## 14.3.1. 问题判断
|
|
|
|
|
|
|
|
|
|
总的来说,如果一个问题包含重叠子问题、最优子结构,并满足无后效性,那么它通常就适合用动态规划求解。然而,我们很难从问题描述上直接提取出这些特性。因此我们通常会放宽条件,**先观察问题是否适合使用回溯(穷举)解决**。
|
|
|
|
|
|
|
|
|
|
**适合用回溯解决的问题通常满足“决策树模型”**,这种问题可以使用树形结构来描述,其中每一个节点代表一个决策,每一条路径代表一个决策序列。
|
|
|
|
|
|
|
|
|
|
换句话说,如果问题包含明确的决策概念,并且解是通过一系列决策产生的,那么它就满足决策树模型,通常可以使用回溯来解决。
|
|
|
|
|
|
|
|
|
|
在此基础上,还有一些动态规划问题的“加分项”,包括:
|
|
|
|
|
|
|
|
|
|
- 问题包含最大(小)或最多(少)等最优化描述。
|
|
|
|
|
- 问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在递推关系。
|
|
|
|
|
|
|
|
|
|
而相应的“减分项”包括:
|
|
|
|
|
|
|
|
|
|
- 问题的目标是找出所有可能的解决方案,而不是找出最优解。
|
|
|
|
|
- 问题描述中有明显的排列组合的特征,需要返回具体的多个方案。
|
|
|
|
|
|
|
|
|
|
如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并在求解过程中验证它。
|
|
|
|
|
|
|
|
|
|
## 14.3.2. 问题求解步骤
|
|
|
|
|
|
|
|
|
|
动态规划的解题流程会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 $dp$ 表,推导状态转移方程,确定边界条件等。
|
|
|
|
|
|
|
|
|
|
为了更形象地展示解题步骤,我们使用一个经典问题「最小路径和」来举例。
|
|
|
|
|
|
|
|
|
|
!!! question
|
|
|
|
|
|
|
|
|
|
给定一个 $n \times m$ 的二维网格 `grid` ,网格中的每个单元格包含一个非负整数,表示该单元格的代价。机器人以左上角单元格为起始点,每次只能向下或者向右移动一步,直至到达右下角单元格。请返回从左上角到右下角的最小路径和。
|
|
|
|
|
|
|
|
|
|
例如以下示例数据,给定网格的最小路径和为 $13$ 。
|
|
|
|
|
|
|
|
|
|
![最小路径和示例数据](dp_solution_pipeline.assets/min_path_sum_example.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 最小路径和示例数据 </p>
|
|
|
|
|
|
|
|
|
|
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
|
|
|
|
|
|
|
|
|
|
本题的每一轮的决策就是从当前格子向下或向右一步。设当前格子的行列索引为 $[i, j]$ ,则向下或向右走一步后,索引变为 $[i+1, j]$ 或 $[i, j+1]$ 。因此,状态应包含行索引和列索引两个变量,记为 $[i, j]$ 。
|
|
|
|
|
|
|
|
|
|
状态 $[i, j]$ 对应的子问题为:从起始点 $[0, 0]$ 走到 $[i, j]$ 的最小路径和,解记为 $dp[i, j]$ 。
|
|
|
|
|
|
|
|
|
|
至此,我们就得到了一个二维 $dp$ 矩阵,其尺寸与输入网格 $grid$ 相同。
|
|
|
|
|
|
|
|
|
|
![状态定义与 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_step1.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 状态定义与 dp 表 </p>
|
|
|
|
|
|
|
|
|
|
!!! note
|
|
|
|
|
|
|
|
|
|
动态规划和回溯过程可以被描述为一个决策序列,而状态由所有决策变量构成。它应当包含描述解题进度的所有变量,其包含了足够的信息,能够用来推导出下一个状态。
|
|
|
|
|
|
|
|
|
|
每个状态都对应一个子问题,我们会定义一个 $dp$ 表来存储所有子问题的解,状态的每个独立变量都是 $dp$ 表的一个维度。本质上看,$dp$ 表是状态和子问题的解之间的映射。
|
|
|
|
|
|
|
|
|
|
**第二步:找出最优子结构,进而推导出状态转移方程**
|
|
|
|
|
|
|
|
|
|
对于状态 $[i, j]$ ,它只能从上边格子 $[i-1, j]$ 和左边格子 $[i, j-1]$ 转移而来。因此最优子结构为:到达 $[i, j]$ 的最小路径和由 $[i, j-1]$ 的最小路径和与 $[i-1, j]$ 的最小路径和,这两者较小的那一个决定。
|
|
|
|
|
|
|
|
|
|
根据以上分析,可推出以下状态转移方程:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
![最优子结构与状态转移方程](dp_solution_pipeline.assets/min_path_sum_solution_step2.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 最优子结构与状态转移方程 </p>
|
|
|
|
|
|
|
|
|
|
!!! note
|
|
|
|
|
|
|
|
|
|
根据定义好的 $dp$ 表,思考原问题和子问题的关系,找出通过子问题的最优解来构造原问题的最优解的方法,即最优子结构。
|
|
|
|
|
|
|
|
|
|
一旦我们找到了最优子结构,就可以使用它来构建出状态转移方程。
|
|
|
|
|
|
|
|
|
|
**第三步:确定边界条件和状态转移顺序**
|
|
|
|
|
|
|
|
|
|
在本题中,处在首行的状态只能向右转移,首列状态只能向下转移,因此首行 $i = 0$ 和首列 $j = 0$ 是边界条件。
|
|
|
|
|
|
|
|
|
|
每个格子是由其左方格子和上方格子转移而来,因此我们使用采用循环来遍历矩阵,外循环遍历各行、内循环遍历各列。
|
|
|
|
|
|
|
|
|
|
![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_step3.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 边界条件与状态转移顺序 </p>
|
|
|
|
|
|
|
|
|
|
!!! note
|
|
|
|
|
|
|
|
|
|
边界条件在动态规划中用于初始化 $dp$ 表,在搜索中用于剪枝。
|
|
|
|
|
|
|
|
|
|
状态转移顺序的核心是要保证在计算当前问题的解时,所有它依赖的更小子问题的解都已经被正确地计算出来。
|
|
|
|
|
|
|
|
|
|
根据以上分析,我们已经可以直接写出动态规划代码。然而子问题分解是一种从顶至底的思想,因此按照“暴力搜索 $\rightarrow$ 记忆化搜索 $\rightarrow$ 动态规划”的顺序实现更加符合思维习惯。
|
|
|
|
|
|
|
|
|
|
### 方法一:暴力搜索
|
|
|
|
|
|
|
|
|
|
从状态 $[i, j]$ 开始搜索,不断分解为更小的状态 $[i-1, j]$ 和 $[i, j-1]$ ,包括以下递归要素:
|
|
|
|
|
|
|
|
|
|
- **递归参数**:状态 $[i, j]$ ;
|
|
|
|
|
- **返回值**:从 $[0, 0]$ 到 $[i, j]$ 的最小路径和 $dp[i, j]$ ;
|
|
|
|
|
- **终止条件**:当 $i = 0$ 且 $j = 0$ 时,返回代价 $grid[0, 0]$ ;
|
|
|
|
|
- **剪枝**:当 $i < 0$ 时或 $j < 0$ 时索引越界,此时返回代价 $+\infty$ ,代表不可行;
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="min_path_sum.java"
|
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
|
|
|
int minPathSumDFS(int[][] grid, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
return Integer.MAX_VALUE;
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
int left = minPathSumDFS(grid, i - 1, j);
|
|
|
|
|
int up = minPathSumDFS(grid, i, j - 1);
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return Math.min(left, up) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="min_path_sum.cpp"
|
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
|
|
|
int minPathSumDFS(vector<vector<int>> &grid, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
return INT_MAX;
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
int left = minPathSumDFS(grid, i - 1, j);
|
|
|
|
|
int up = minPathSumDFS(grid, i, j - 1);
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="min_path_sum.py"
|
|
|
|
|
def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:
|
|
|
|
|
"""最小路径和:暴力搜索"""
|
|
|
|
|
# 若为左上角单元格,则终止搜索
|
|
|
|
|
if i == 0 and j == 0:
|
|
|
|
|
return grid[0][0]
|
|
|
|
|
# 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if i < 0 or j < 0:
|
|
|
|
|
return inf
|
|
|
|
|
# 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
left = min_path_sum_dfs(grid, i - 1, j)
|
|
|
|
|
up = min_path_sum_dfs(grid, i, j - 1)
|
|
|
|
|
# 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return min(left, up) + grid[i][j]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="min_path_sum.go"
|
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
|
|
|
func minPathSumDFS(grid [][]int, i, j int) int {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if i == 0 && j == 0 {
|
|
|
|
|
return grid[0][0]
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if i < 0 || j < 0 {
|
|
|
|
|
return math.MaxInt
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
left := minPathSumDFS(grid, i-1, j)
|
|
|
|
|
up := minPathSumDFS(grid, i, j-1)
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return int(math.Min(float64(left), float64(up))) + grid[i][j]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
|
|
|
|
```javascript title="min_path_sum.js"
|
|
|
|
|
[class]{}-[func]{minPathSumDFS}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
|
|
|
|
```typescript title="min_path_sum.ts"
|
|
|
|
|
[class]{}-[func]{minPathSumDFS}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="min_path_sum.c"
|
|
|
|
|
[class]{}-[func]{minPathSumDFS}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="min_path_sum.cs"
|
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
|
|
|
int minPathSumDFS(int[][] grid, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0){
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
return int.MaxValue;
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
int left = minPathSumDFS(grid, i - 1, j);
|
|
|
|
|
int up = minPathSumDFS(grid, i, j - 1);
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return Math.Min(left, up) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="min_path_sum.swift"
|
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
|
|
|
func minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if i == 0, j == 0 {
|
|
|
|
|
return grid[0][0]
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if i < 0 || j < 0 {
|
|
|
|
|
return .max
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
let left = minPathSumDFS(grid: grid, i: i - 1, j: j)
|
|
|
|
|
let up = minPathSumDFS(grid: grid, i: i, j: j - 1)
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return min(left, up) + grid[i][j]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="min_path_sum.zig"
|
|
|
|
|
// 最小路径和:暴力搜索
|
|
|
|
|
fn minPathSumDFS(grid: anytype, i: i32, j: i32) i32 {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 and j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 or j < 0) {
|
|
|
|
|
return std.math.maxInt(i32);
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
var left = minPathSumDFS(grid, i - 1, j);
|
|
|
|
|
var up = minPathSumDFS(grid, i, j - 1);
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="min_path_sum.dart"
|
|
|
|
|
[class]{}-[func]{minPathSumDFS}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
下图给出了以 $dp[2, 1]$ 为根节点的递归树,其中包含一些重叠子问题,其数量会随着网格 `grid` 的尺寸变大而急剧增多。
|
|
|
|
|
|
|
|
|
|
本质上看,造成重叠子问题的原因为:**存在多条路径可以从左上角到达某一单元格**。
|
|
|
|
|
|
|
|
|
|
![暴力搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 暴力搜索递归树 </p>
|
|
|
|
|
|
|
|
|
|
每个状态都有向下和向右两种选择,从左上角走到右下角总共需要 $m + n - 2$ 步,所以最差时间复杂度为 $O(2^{m + n})$ 。请注意,这种计算方式未考虑临近网格边界的情况,当到达网络边界时只剩下一种选择。因此实际的路径数量会少一些。
|
|
|
|
|
|
|
|
|
|
### 方法二:记忆化搜索
|
|
|
|
|
|
|
|
|
|
我们引入一个和网格 `grid` 相同尺寸的记忆列表 `mem` ,用于记录各个子问题的解,并将重叠子问题进行剪枝。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="min_path_sum.java"
|
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
|
|
|
int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
return Integer.MAX_VALUE;
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if (mem[i][j] != -1) {
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
// 左边和上边单元格的最小路径代价
|
|
|
|
|
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
|
|
|
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[i][j] = Math.min(left, up) + grid[i][j];
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="min_path_sum.cpp"
|
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
|
|
|
int minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
return INT_MAX;
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if (mem[i][j] != -1) {
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
// 左边和上边单元格的最小路径代价
|
|
|
|
|
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
|
|
|
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="min_path_sum.py"
|
|
|
|
|
def min_path_sum_dfs_mem(
|
|
|
|
|
grid: list[list[int]], mem: list[list[int]], i: int, j: int
|
|
|
|
|
) -> int:
|
|
|
|
|
"""最小路径和:记忆化搜索"""
|
|
|
|
|
# 若为左上角单元格,则终止搜索
|
|
|
|
|
if i == 0 and j == 0:
|
|
|
|
|
return grid[0][0]
|
|
|
|
|
# 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if i < 0 or j < 0:
|
|
|
|
|
return inf
|
|
|
|
|
# 若已有记录,则直接返回
|
|
|
|
|
if mem[i][j] != -1:
|
|
|
|
|
return mem[i][j]
|
|
|
|
|
# 左边和上边单元格的最小路径代价
|
|
|
|
|
left = min_path_sum_dfs_mem(grid, mem, i - 1, j)
|
|
|
|
|
up = min_path_sum_dfs_mem(grid, mem, i, j - 1)
|
|
|
|
|
# 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[i][j] = min(left, up) + grid[i][j]
|
|
|
|
|
return mem[i][j]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="min_path_sum.go"
|
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
|
|
|
func minPathSumDFSMem(grid, mem [][]int, i, j int) int {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if i == 0 && j == 0 {
|
|
|
|
|
return grid[0][0]
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if i < 0 || j < 0 {
|
|
|
|
|
return math.MaxInt
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if mem[i][j] != -1 {
|
|
|
|
|
return mem[i][j]
|
|
|
|
|
}
|
|
|
|
|
// 左边和上边单元格的最小路径代价
|
|
|
|
|
left := minPathSumDFSMem(grid, mem, i-1, j)
|
|
|
|
|
up := minPathSumDFSMem(grid, mem, i, j-1)
|
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]
|
|
|
|
|
return mem[i][j]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
|
|
|
|
```javascript title="min_path_sum.js"
|
|
|
|
|
[class]{}-[func]{minPathSumDFSMem}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
|
|
|
|
```typescript title="min_path_sum.ts"
|
|
|
|
|
[class]{}-[func]{minPathSumDFSMem}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="min_path_sum.c"
|
|
|
|
|
[class]{}-[func]{minPathSumDFSMem}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="min_path_sum.cs"
|
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
|
|
|
int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
return int.MaxValue;
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if (mem[i][j] != -1) {
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
// 左边和上边单元格的最小路径代价
|
|
|
|
|
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
|
|
|
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[i][j] = Math.Min(left, up) + grid[i][j];
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="min_path_sum.swift"
|
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
|
|
|
func minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if i == 0, j == 0 {
|
|
|
|
|
return grid[0][0]
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if i < 0 || j < 0 {
|
|
|
|
|
return .max
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if mem[i][j] != -1 {
|
|
|
|
|
return mem[i][j]
|
|
|
|
|
}
|
|
|
|
|
// 左边和上边单元格的最小路径代价
|
|
|
|
|
let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)
|
|
|
|
|
let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)
|
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[i][j] = min(left, up) + grid[i][j]
|
|
|
|
|
return mem[i][j]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="min_path_sum.zig"
|
|
|
|
|
// 最小路径和:记忆化搜索
|
|
|
|
|
fn minPathSumDFSMem(grid: anytype, mem: anytype, i: i32, j: i32) i32 {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 and j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 or j < 0) {
|
|
|
|
|
return std.math.maxInt(i32);
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if (mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] != -1) {
|
|
|
|
|
return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
var left = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
|
|
|
var up = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|
|
|
|
return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="min_path_sum.dart"
|
|
|
|
|
[class]{}-[func]{minPathSumDFSMem}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
引入记忆化后,所有子问题的解只需计算一次,因此时间复杂度取决于状态总数,即网格尺寸 $O(nm)$ 。
|
|
|
|
|
|
|
|
|
|
![记忆化搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs_mem.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 记忆化搜索递归树 </p>
|
|
|
|
|
|
|
|
|
|
### 方法三:动态规划
|
|
|
|
|
|
|
|
|
|
基于迭代实现动态规划解法。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="min_path_sum.java"
|
|
|
|
|
/* 最小路径和:动态规划 */
|
|
|
|
|
int minPathSumDP(int[][] grid) {
|
|
|
|
|
int n = grid.length, m = grid[0].length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
int[][] dp = new int[n][m];
|
|
|
|
|
dp[0][0] = grid[0][0];
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n - 1][m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="min_path_sum.cpp"
|
|
|
|
|
/* 最小路径和:动态规划 */
|
|
|
|
|
int minPathSumDP(vector<vector<int>> &grid) {
|
|
|
|
|
int n = grid.size(), m = grid[0].size();
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
vector<vector<int>> dp(n, vector<int>(m));
|
|
|
|
|
dp[0][0] = grid[0][0];
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n - 1][m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="min_path_sum.py"
|
|
|
|
|
def min_path_sum_dp(grid: list[list[int]]) -> int:
|
|
|
|
|
"""最小路径和:动态规划"""
|
|
|
|
|
n, m = len(grid), len(grid[0])
|
|
|
|
|
# 初始化 dp 表
|
|
|
|
|
dp = [[0] * m for _ in range(n)]
|
|
|
|
|
dp[0][0] = grid[0][0]
|
|
|
|
|
# 状态转移:首行
|
|
|
|
|
for j in range(1, m):
|
|
|
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
|
|
|
|
# 状态转移:首列
|
|
|
|
|
for i in range(1, n):
|
|
|
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
|
|
|
|
# 状态转移:其余行列
|
|
|
|
|
for i in range(1, n):
|
|
|
|
|
for j in range(1, m):
|
|
|
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
|
|
|
|
return dp[n - 1][m - 1]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="min_path_sum.go"
|
|
|
|
|
/* 最小路径和:动态规划 */
|
|
|
|
|
func minPathSumDP(grid [][]int) int {
|
|
|
|
|
n, m := len(grid), len(grid[0])
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
dp := make([][]int, n)
|
|
|
|
|
for i := 0; i < n; i++ {
|
|
|
|
|
dp[i] = make([]int, m)
|
|
|
|
|
}
|
|
|
|
|
dp[0][0] = grid[0][0]
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for j := 1; j < m; j++ {
|
|
|
|
|
dp[0][j] = dp[0][j-1] + grid[0][j]
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
for i := 1; i < n; i++ {
|
|
|
|
|
dp[i][0] = dp[i-1][0] + grid[i][0]
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行列
|
|
|
|
|
for i := 1; i < n; i++ {
|
|
|
|
|
for j := 1; j < m; j++ {
|
|
|
|
|
dp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n-1][m-1]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
|
|
|
|
```javascript title="min_path_sum.js"
|
|
|
|
|
[class]{}-[func]{minPathSumDP}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
|
|
|
|
```typescript title="min_path_sum.ts"
|
|
|
|
|
[class]{}-[func]{minPathSumDP}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="min_path_sum.c"
|
|
|
|
|
[class]{}-[func]{minPathSumDP}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="min_path_sum.cs"
|
|
|
|
|
/* 最小路径和:动态规划 */
|
|
|
|
|
int minPathSumDP(int[][] grid) {
|
|
|
|
|
int n = grid.Length, m = grid[0].Length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
int[,] dp = new int[n, m];
|
|
|
|
|
dp[0, 0] = grid[0][0];
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[0, j] = dp[0, j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
dp[i, 0] = dp[i - 1, 0] + grid[i][0];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n - 1, m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="min_path_sum.swift"
|
|
|
|
|
/* 最小路径和:动态规划 */
|
|
|
|
|
func minPathSumDP(grid: [[Int]]) -> Int {
|
|
|
|
|
let n = grid.count
|
|
|
|
|
let m = grid[0].count
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
var dp = Array(repeating: Array(repeating: 0, count: m), count: n)
|
|
|
|
|
dp[0][0] = grid[0][0]
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for j in stride(from: 1, to: m, by: 1) {
|
|
|
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
for i in stride(from: 1, to: n, by: 1) {
|
|
|
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行列
|
|
|
|
|
for i in stride(from: 1, to: n, by: 1) {
|
|
|
|
|
for j in stride(from: 1, to: m, by: 1) {
|
|
|
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n - 1][m - 1]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="min_path_sum.zig"
|
|
|
|
|
// 最小路径和:动态规划
|
|
|
|
|
fn minPathSumDP(comptime grid: anytype) i32 {
|
|
|
|
|
comptime var n = grid.len;
|
|
|
|
|
comptime var m = grid[0].len;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
var dp = [_][m]i32{[_]i32{0} ** m} ** n;
|
|
|
|
|
dp[0][0] = grid[0][0];
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for (1..m) |j| {
|
|
|
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
for (1..n) |i| {
|
|
|
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行列
|
|
|
|
|
for (1..n) |i| {
|
|
|
|
|
for (1..m) |j| {
|
|
|
|
|
dp[i][j] = @min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n - 1][m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="min_path_sum.dart"
|
|
|
|
|
[class]{}-[func]{minPathSumDP}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
下图展示了最小路径和的状态转移过程,其遍历了整个网格,**因此时间复杂度为 $O(nm)$** 。
|
|
|
|
|
|
|
|
|
|
数组 `dp` 大小为 $n \times m$ ,**因此空间复杂度为 $O(nm)$** 。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![最小路径和的动态规划过程](dp_solution_pipeline.assets/min_path_sum_dp_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![min_path_sum_dp_step2](dp_solution_pipeline.assets/min_path_sum_dp_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![min_path_sum_dp_step3](dp_solution_pipeline.assets/min_path_sum_dp_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![min_path_sum_dp_step4](dp_solution_pipeline.assets/min_path_sum_dp_step4.png)
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![min_path_sum_dp_step5](dp_solution_pipeline.assets/min_path_sum_dp_step5.png)
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![min_path_sum_dp_step6](dp_solution_pipeline.assets/min_path_sum_dp_step6.png)
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![min_path_sum_dp_step7](dp_solution_pipeline.assets/min_path_sum_dp_step7.png)
|
|
|
|
|
|
|
|
|
|
=== "<8>"
|
|
|
|
|
![min_path_sum_dp_step8](dp_solution_pipeline.assets/min_path_sum_dp_step8.png)
|
|
|
|
|
|
|
|
|
|
=== "<9>"
|
|
|
|
|
![min_path_sum_dp_step9](dp_solution_pipeline.assets/min_path_sum_dp_step9.png)
|
|
|
|
|
|
|
|
|
|
=== "<10>"
|
|
|
|
|
![min_path_sum_dp_step10](dp_solution_pipeline.assets/min_path_sum_dp_step10.png)
|
|
|
|
|
|
|
|
|
|
=== "<11>"
|
|
|
|
|
![min_path_sum_dp_step11](dp_solution_pipeline.assets/min_path_sum_dp_step11.png)
|
|
|
|
|
|
|
|
|
|
=== "<12>"
|
|
|
|
|
![min_path_sum_dp_step12](dp_solution_pipeline.assets/min_path_sum_dp_step12.png)
|
|
|
|
|
|
|
|
|
|
### 状态压缩
|
|
|
|
|
|
|
|
|
|
由于每个格子只与其左边和上边的格子有关,因此我们可以只用一个单行数组来实现 $dp$ 表。
|
|
|
|
|
|
|
|
|
|
请注意,因为数组 `dp` 只能表示一行的状态,所以我们无法提前初始化首列状态,而是在遍历每行中更新它。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="min_path_sum.java"
|
|
|
|
|
/* 最小路径和:状态压缩后的动态规划 */
|
|
|
|
|
int minPathSumDPComp(int[][] grid) {
|
|
|
|
|
int n = grid.length, m = grid[0].length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
int[] dp = new int[m];
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
dp[0] = grid[0][0];
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0];
|
|
|
|
|
// 状态转移:其余列
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="min_path_sum.cpp"
|
|
|
|
|
/* 最小路径和:状态压缩后的动态规划 */
|
|
|
|
|
int minPathSumDPComp(vector<vector<int>> &grid) {
|
|
|
|
|
int n = grid.size(), m = grid[0].size();
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
vector<int> dp(m);
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
dp[0] = grid[0][0];
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0];
|
|
|
|
|
// 状态转移:其余列
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="min_path_sum.py"
|
|
|
|
|
def min_path_sum_dp_comp(grid: list[list[int]]) -> int:
|
|
|
|
|
"""最小路径和:状态压缩后的动态规划"""
|
|
|
|
|
n, m = len(grid), len(grid[0])
|
|
|
|
|
# 初始化 dp 表
|
|
|
|
|
dp = [0] * m
|
|
|
|
|
# 状态转移:首行
|
|
|
|
|
dp[0] = grid[0][0]
|
|
|
|
|
for j in range(1, m):
|
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j]
|
|
|
|
|
# 状态转移:其余行
|
|
|
|
|
for i in range(1, n):
|
|
|
|
|
# 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0]
|
|
|
|
|
# 状态转移:其余列
|
|
|
|
|
for j in range(1, m):
|
|
|
|
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
|
|
|
|
return dp[m - 1]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="min_path_sum.go"
|
|
|
|
|
/* 最小路径和:状态压缩后的动态规划 */
|
|
|
|
|
func minPathSumDPComp(grid [][]int) int {
|
|
|
|
|
n, m := len(grid), len(grid[0])
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
dp := make([]int, m)
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
dp[0] = grid[0][0]
|
|
|
|
|
for j := 1; j < m; j++ {
|
|
|
|
|
dp[j] = dp[j-1] + grid[0][j]
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行列
|
|
|
|
|
for i := 1; i < n; i++ {
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0]
|
|
|
|
|
// 状态转移:其余列
|
|
|
|
|
for j := 1; j < m; j++ {
|
|
|
|
|
dp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[m-1]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
|
|
|
|
```javascript title="min_path_sum.js"
|
|
|
|
|
[class]{}-[func]{minPathSumDPComp}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
|
|
|
|
```typescript title="min_path_sum.ts"
|
|
|
|
|
[class]{}-[func]{minPathSumDPComp}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="min_path_sum.c"
|
|
|
|
|
[class]{}-[func]{minPathSumDPComp}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="min_path_sum.cs"
|
|
|
|
|
/* 最小路径和:状态压缩后的动态规划 */
|
|
|
|
|
int minPathSumDPComp(int[][] grid) {
|
|
|
|
|
int n = grid.Length, m = grid[0].Length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
int[] dp = new int[m];
|
|
|
|
|
dp[0] = grid[0][0];
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0];
|
|
|
|
|
// 状态转移:其余列
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="min_path_sum.swift"
|
|
|
|
|
/* 最小路径和:状态压缩后的动态规划 */
|
|
|
|
|
func minPathSumDPComp(grid: [[Int]]) -> Int {
|
|
|
|
|
let n = grid.count
|
|
|
|
|
let m = grid[0].count
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
var dp = Array(repeating: 0, count: m)
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
dp[0] = grid[0][0]
|
|
|
|
|
for j in stride(from: 1, to: m, by: 1) {
|
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j]
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行
|
|
|
|
|
for i in stride(from: 1, to: n, by: 1) {
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0]
|
|
|
|
|
// 状态转移:其余列
|
|
|
|
|
for j in stride(from: 1, to: m, by: 1) {
|
|
|
|
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[m - 1]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="min_path_sum.zig"
|
|
|
|
|
// 最小路径和:状态压缩后的动态规划
|
|
|
|
|
fn minPathSumDPComp(comptime grid: anytype) i32 {
|
|
|
|
|
comptime var n = grid.len;
|
|
|
|
|
comptime var m = grid[0].len;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
var dp = [_]i32{0} ** m;
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
dp[0] = grid[0][0];
|
|
|
|
|
for (1..m) |j| {
|
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行
|
|
|
|
|
for (1..n) |i| {
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0];
|
|
|
|
|
for (1..m) |j| {
|
|
|
|
|
dp[j] = @min(dp[j - 1], dp[j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[m - 1];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="min_path_sum.dart"
|
|
|
|
|
[class]{}-[func]{minPathSumDPComp}
|
|
|
|
|
```
|