You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_divide_and_conquer/binary_search_recur.md

46 lines
2.5 KiB

# 分治搜索策略
我们已经学过,搜索算法分为两大类。
- **暴力搜索**:它通过遍历数据结构实现,时间复杂度为 $O(n)$ 。
- **自适应搜索**:它利用特有的数据组织形式或先验信息,时间复杂度可达到 $O(\log n)$ 甚至 $O(1)$ 。
实际上,**时间复杂度为 $O(\log n)$ 的搜索算法通常是基于分治策略实现的**,例如二分查找和树。
- 二分查找的每一步都将问题(在数组中搜索目标元素)分解为一个小问题(在数组的一半中搜索目标元素),这个过程一直持续到数组为空或找到目标元素为止。
- 树是分治思想的代表在二叉搜索树、AVL 树、堆等数据结构中,各种操作的时间复杂度皆为 $O(\log n)$ 。
二分查找的分治策略如下所示。
- **问题可以分解**:二分查找递归地将原问题(在数组中进行查找)分解为子问题(在数组的一半中进行查找),这是通过比较中间元素和目标元素来实现的。
- **子问题是独立的**:在二分查找中,每轮只处理一个子问题,它不受其他子问题的影响。
- **子问题的解无须合并**:二分查找旨在查找一个特定元素,因此不需要将子问题的解进行合并。当子问题得到解决时,原问题也会同时得到解决。
分治能够提升搜索效率,本质上是因为暴力搜索每轮只能排除一个选项,**而分治搜索每轮可以排除一半选项**。
### 基于分治实现二分查找
在之前的章节中,二分查找是基于递推(迭代)实现的。现在我们基于分治(递归)来实现它。
!!! question
给定一个长度为 $n$ 的有序数组 `nums` ,其中所有元素都是唯一的,请查找元素 `target`
从分治角度,我们将搜索区间 $[i, j]$ 对应的子问题记为 $f(i, j)$ 。
以原问题 $f(0, n-1)$ 为起始点,通过以下步骤进行二分查找。
1. 计算搜索区间 $[i, j]$ 的中点 $m$ ,根据它排除一半搜索区间。
2. 递归求解规模减小一半的子问题,可能为 $f(i, m-1)$ 或 $f(m+1, j)$ 。
3. 循环第 `1.` 步和第 `2.` 步,直至找到 `target` 或区间为空时返回。
下图展示了在数组中二分查找元素 $6$ 的分治过程。
![二分查找的分治过程](binary_search_recur.assets/binary_search_recur.png)
在实现代码中,我们声明一个递归函数 `dfs()` 来求解问题 $f(i, j)$
```src
[file]{binary_search_recur}-[class]{}-[func]{binary_search}
```