|
|
|
"""
|
|
|
|
File: time_complexity.py
|
|
|
|
Created Time: 2022-11-25
|
|
|
|
Author: Krahets (krahets@163.com)
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def constant(n: int) -> int:
|
|
|
|
"""常数阶"""
|
|
|
|
count = 0
|
|
|
|
size = 100000
|
|
|
|
for _ in range(size):
|
|
|
|
count += 1
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def linear(n: int) -> int:
|
|
|
|
"""线性阶"""
|
|
|
|
count = 0
|
|
|
|
for _ in range(n):
|
|
|
|
count += 1
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def array_traversal(nums: list[int]) -> int:
|
|
|
|
"""线性阶(遍历数组)"""
|
|
|
|
count = 0
|
|
|
|
# 循环次数与数组长度成正比
|
|
|
|
for num in nums:
|
|
|
|
count += 1
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def quadratic(n: int) -> int:
|
|
|
|
"""平方阶"""
|
|
|
|
count = 0
|
|
|
|
# 循环次数与数组长度成平方关系
|
|
|
|
for i in range(n):
|
|
|
|
for j in range(n):
|
|
|
|
count += 1
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def bubble_sort(nums: list[int]) -> int:
|
|
|
|
"""平方阶(冒泡排序)"""
|
|
|
|
count = 0 # 计数器
|
|
|
|
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
|
|
|
for i in range(len(nums) - 1, 0, -1):
|
|
|
|
# 内循环:冒泡操作
|
|
|
|
for j in range(i):
|
|
|
|
if nums[j] > nums[j + 1]:
|
|
|
|
# 交换 nums[j] 与 nums[j + 1]
|
|
|
|
tmp: int = nums[j]
|
|
|
|
nums[j] = nums[j + 1]
|
|
|
|
nums[j + 1] = tmp
|
|
|
|
count += 3 # 元素交换包含 3 个单元操作
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def exponential(n: int) -> int:
|
|
|
|
"""指数阶(循环实现)"""
|
|
|
|
count = 0
|
|
|
|
base = 1
|
|
|
|
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
|
|
for _ in range(n):
|
|
|
|
for _ in range(base):
|
|
|
|
count += 1
|
|
|
|
base *= 2
|
|
|
|
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def exp_recur(n: int) -> int:
|
|
|
|
"""指数阶(递归实现)"""
|
|
|
|
if n == 1:
|
|
|
|
return 1
|
|
|
|
return exp_recur(n - 1) + exp_recur(n - 1) + 1
|
|
|
|
|
|
|
|
|
|
|
|
def logarithmic(n: float) -> int:
|
|
|
|
"""对数阶(循环实现)"""
|
|
|
|
count = 0
|
|
|
|
while n > 1:
|
|
|
|
n = n / 2
|
|
|
|
count += 1
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def log_recur(n: float) -> int:
|
|
|
|
"""对数阶(递归实现)"""
|
|
|
|
if n <= 1:
|
|
|
|
return 0
|
|
|
|
return log_recur(n / 2) + 1
|
|
|
|
|
|
|
|
|
|
|
|
def linear_log_recur(n: float) -> int:
|
|
|
|
"""线性对数阶"""
|
|
|
|
if n <= 1:
|
|
|
|
return 1
|
|
|
|
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
|
|
|
|
for _ in range(n):
|
|
|
|
count += 1
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
def factorial_recur(n: int) -> int:
|
|
|
|
"""阶乘阶(递归实现)"""
|
|
|
|
if n == 0:
|
|
|
|
return 1
|
|
|
|
count = 0
|
|
|
|
# 从 1 个分裂出 n 个
|
|
|
|
for _ in range(n):
|
|
|
|
count += factorial_recur(n - 1)
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
|
|
"""Driver Code"""
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
|
|
|
n = 8
|
|
|
|
print("输入数据大小 n =", n)
|
|
|
|
|
|
|
|
count: int = constant(n)
|
|
|
|
print("常数阶的计算操作数量 =", count)
|
|
|
|
|
|
|
|
count: int = linear(n)
|
|
|
|
print("线性阶的计算操作数量 =", count)
|
|
|
|
count: int = array_traversal([0] * n)
|
|
|
|
print("线性阶(遍历数组)的计算操作数量 =", count)
|
|
|
|
|
|
|
|
count: int = quadratic(n)
|
|
|
|
print("平方阶的计算操作数量 =", count)
|
|
|
|
nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1]
|
|
|
|
count: int = bubble_sort(nums)
|
|
|
|
print("平方阶(冒泡排序)的计算操作数量 =", count)
|
|
|
|
|
|
|
|
count: int = exponential(n)
|
|
|
|
print("指数阶(循环实现)的计算操作数量 =", count)
|
|
|
|
count: int = exp_recur(n)
|
|
|
|
print("指数阶(递归实现)的计算操作数量 =", count)
|
|
|
|
|
|
|
|
count: int = logarithmic(n)
|
|
|
|
print("对数阶(循环实现)的计算操作数量 =", count)
|
|
|
|
count: int = log_recur(n)
|
|
|
|
print("对数阶(递归实现)的计算操作数量 =", count)
|
|
|
|
|
|
|
|
count: int = linear_log_recur(n)
|
|
|
|
print("线性对数阶(递归实现)的计算操作数量 =", count)
|
|
|
|
|
|
|
|
count: int = factorial_recur(n)
|
|
|
|
print("阶乘阶(递归实现)的计算操作数量 =", count)
|