Under the linked list representation, the storage unit of a binary tree is a node `TreeNode`, with nodes connected by pointers. The basic operations of binary trees under the linked list representation were introduced in the previous section.
So, can we use an array to represent a binary tree? The answer is yes.
## 7.3.1 Representing perfect binary trees
Let's analyze a simple case first. Given a perfect binary tree, we store all nodes in an array according to the order of level-order traversal, where each node corresponds to a unique array index.
Based on the characteristics of level-order traversal, we can deduce a "mapping formula" between the index of a parent node and its children: **If a node's index is $i$, then the index of its left child is $2i + 1$ and the right child is $2i + 2$**. Figure 7-12 shows the mapping relationship between the indices of various nodes.
![Array representation of a perfect binary tree](array_representation_of_tree.assets/array_representation_binary_tree.png){ class="animation-figure" }
<palign="center"> Figure 7-12 Array representation of a perfect binary tree </p>
**The mapping formula plays a role similar to the node references (pointers) in linked lists**. Given any node in the array, we can access its left (right) child node using the mapping formula.
## 7.3.2 Representing any binary tree
Perfect binary trees are a special case; there are often many `None` values in the middle levels of a binary tree. Since the sequence of level-order traversal does not include these `None` values, we cannot solely rely on this sequence to deduce the number and distribution of `None` values. **This means that multiple binary tree structures can match the same level-order traversal sequence**.
To solve this problem, **we can consider explicitly writing out all `None` values in the level-order traversal sequence**. As shown in Figure 7-14, after this treatment, the level-order traversal sequence can uniquely represent a binary tree. Example code is as follows:
val tree = mutableListOf( 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 )
```
=== "Ruby"
```ruby title=""
```
=== "Zig"
```zig title=""
```
![Array representation of any type of binary tree](array_representation_of_tree.assets/array_representation_with_empty.png){ class="animation-figure" }
<palign="center"> Figure 7-14 Array representation of any type of binary tree </p>
It's worth noting that **complete binary trees are very suitable for array representation**. Recalling the definition of a complete binary tree, `None` appears only at the bottom level and towards the right, **meaning all `None` values definitely appear at the end of the level-order traversal sequence**.
This means that when using an array to represent a complete binary tree, it's possible to omit storing all `None` values, which is very convenient. Figure 7-15 gives an example.
![Array representation of a complete binary tree](array_representation_of_tree.assets/array_representation_complete_binary_tree.png){ class="animation-figure" }
<palign="center"> Figure 7-15 Array representation of a complete binary tree </p>
The following code implements a binary tree based on array representation, including the following operations:
- Given a node, obtain its value, left (right) child node, and parent node.
- Obtain the preorder, inorder, postorder, and level-order traversal sequences.