|
|
|
/**
|
|
|
|
* File: min_path_sum.c
|
|
|
|
* Created Time: 2023-10-02
|
|
|
|
* Author: Zuoxun (845242523@qq.com)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "../utils/common.h"
|
|
|
|
|
|
|
|
// 假设矩阵最大行列数为 100
|
|
|
|
#define MAX_SIZE 100
|
|
|
|
|
|
|
|
/* 求最小值 */
|
|
|
|
int myMin(int a, int b) {
|
|
|
|
return a < b ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
|
|
int minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
return grid[0][0];
|
|
|
|
}
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
return INT_MAX;
|
|
|
|
}
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
int up = minPathSumDFS(grid, i - 1, j);
|
|
|
|
int left = minPathSumDFS(grid, i, j - 1);
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
|
|
int minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
return grid[0][0];
|
|
|
|
}
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
return INT_MAX;
|
|
|
|
}
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
if (mem[i][j] != -1) {
|
|
|
|
return mem[i][j];
|
|
|
|
}
|
|
|
|
// 左边和上边单元格的最小路径代价
|
|
|
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
|
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
|
|
|
|
return mem[i][j];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 最小路径和:动态规划 */
|
|
|
|
int minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
|
|
|
|
// 初始化 dp 表
|
|
|
|
int **dp = malloc(n * sizeof(int *));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
dp[i] = calloc(m, sizeof(int));
|
|
|
|
}
|
|
|
|
dp[0][0] = grid[0][0];
|
|
|
|
// 状态转移:首行
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
|
|
}
|
|
|
|
// 状态转移:首列
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
|
|
}
|
|
|
|
// 状态转移:其余行和列
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int res = dp[n - 1][m - 1];
|
|
|
|
// 释放内存
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
free(dp[i]);
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 最小路径和:空间优化后的动态规划 */
|
|
|
|
int minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
|
|
|
|
// 初始化 dp 表
|
|
|
|
int *dp = calloc(m, sizeof(int));
|
|
|
|
// 状态转移:首行
|
|
|
|
dp[0] = grid[0][0];
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
|
|
}
|
|
|
|
// 状态转移:其余行
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
// 状态转移:首列
|
|
|
|
dp[0] = dp[0] + grid[i][0];
|
|
|
|
// 状态转移:其余列
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int res = dp[m - 1];
|
|
|
|
// 释放内存
|
|
|
|
free(dp);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Driver Code */
|
|
|
|
int main() {
|
|
|
|
int grid[MAX_SIZE][MAX_SIZE] = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
|
|
|
|
int n = 4, m = 4; // 矩阵容量为 MAX_SIZE * MAX_SIZE ,有效行列数为 n * m
|
|
|
|
|
|
|
|
// 暴力搜索
|
|
|
|
int res = minPathSumDFS(grid, n - 1, m - 1);
|
|
|
|
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
|
|
|
|
|
|
|
// 记忆化搜索
|
|
|
|
int mem[MAX_SIZE][MAX_SIZE];
|
|
|
|
memset(mem, -1, sizeof(mem));
|
|
|
|
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
|
|
|
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
|
|
|
|
|
|
|
// 动态规划
|
|
|
|
res = minPathSumDP(grid, n, m);
|
|
|
|
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
|
|
|
|
|
|
|
// 空间优化后的动态规划
|
|
|
|
res = minPathSumDPComp(grid, n, m);
|
|
|
|
printf("从左上角到右下角的最小路径和为 %d\n", res);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|