|
|
|
|
/**
|
|
|
|
|
* File: min_path_sum.dart
|
|
|
|
|
* Created Time: 2023-08-11
|
|
|
|
|
* Author: liuyuxin (gvenusleo@gmail.com)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
import 'dart:math';
|
|
|
|
|
|
|
|
|
|
/* 最小路径和:暴力搜索 */
|
|
|
|
|
int minPathSumDFS(List<List<int>> grid, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
// 在 Dart 中,int 类型是固定范围的整数,不存在表示“无穷大”的值
|
|
|
|
|
return BigInt.from(2).pow(31).toInt();
|
|
|
|
|
}
|
|
|
|
|
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
|
|
|
|
int up = minPathSumDFS(grid, i - 1, j);
|
|
|
|
|
int left = minPathSumDFS(grid, i, j - 1);
|
|
|
|
|
// 返回从左上角到 (i, j) 的最小路径代价
|
|
|
|
|
return min(left, up) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 最小路径和:记忆化搜索 */
|
|
|
|
|
int minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {
|
|
|
|
|
// 若为左上角单元格,则终止搜索
|
|
|
|
|
if (i == 0 && j == 0) {
|
|
|
|
|
return grid[0][0];
|
|
|
|
|
}
|
|
|
|
|
// 若行列索引越界,则返回 +∞ 代价
|
|
|
|
|
if (i < 0 || j < 0) {
|
|
|
|
|
// 在 Dart 中,int 类型是固定范围的整数,不存在表示“无穷大”的值
|
|
|
|
|
return BigInt.from(2).pow(31).toInt();
|
|
|
|
|
}
|
|
|
|
|
// 若已有记录,则直接返回
|
|
|
|
|
if (mem[i][j] != -1) {
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
// 左边和上边单元格的最小路径代价
|
|
|
|
|
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
|
|
|
|
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
|
|
|
|
// 记录并返回左上角到 (i, j) 的最小路径代价
|
|
|
|
|
mem[i][j] = min(left, up) + grid[i][j];
|
|
|
|
|
return mem[i][j];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 最小路径和:动态规划 */
|
|
|
|
|
int minPathSumDP(List<List<int>> grid) {
|
|
|
|
|
int n = grid.length, m = grid[0].length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
List<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));
|
|
|
|
|
dp[0][0] = grid[0][0];
|
|
|
|
|
// 状态转移:首行
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行和列
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[n - 1][m - 1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 最小路径和:空间优化后的动态规划 */
|
|
|
|
|
int minPathSumDPComp(List<List<int>> grid) {
|
|
|
|
|
int n = grid.length, m = grid[0].length;
|
|
|
|
|
// 初始化 dp 表
|
|
|
|
|
List<int> dp = List.filled(m, 0);
|
|
|
|
|
dp[0] = grid[0][0];
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = dp[j - 1] + grid[0][j];
|
|
|
|
|
}
|
|
|
|
|
// 状态转移:其余行
|
|
|
|
|
for (int i = 1; i < n; i++) {
|
|
|
|
|
// 状态转移:首列
|
|
|
|
|
dp[0] = dp[0] + grid[i][0];
|
|
|
|
|
// 状态转移:其余列
|
|
|
|
|
for (int j = 1; j < m; j++) {
|
|
|
|
|
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return dp[m - 1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Driver Code */
|
|
|
|
|
void main() {
|
|
|
|
|
List<List<int>> grid = [
|
|
|
|
|
[1, 3, 1, 5],
|
|
|
|
|
[2, 2, 4, 2],
|
|
|
|
|
[5, 3, 2, 1],
|
|
|
|
|
[4, 3, 5, 2],
|
|
|
|
|
];
|
|
|
|
|
int n = grid.length, m = grid[0].length;
|
|
|
|
|
|
|
|
|
|
// 暴力搜索
|
|
|
|
|
int res = minPathSumDFS(grid, n - 1, m - 1);
|
|
|
|
|
print("从左上角到右下角的最小路径和为 $res");
|
|
|
|
|
|
|
|
|
|
// 记忆化搜索
|
|
|
|
|
List<List<int>> mem = List.generate(n, (i) => List.filled(m, -1));
|
|
|
|
|
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
|
|
|
|
print("从左上角到右下角的最小路径和为 $res");
|
|
|
|
|
|
|
|
|
|
// 动态规划
|
|
|
|
|
res = minPathSumDP(grid);
|
|
|
|
|
print("从左上角到右下角的最小路径和为 $res");
|
|
|
|
|
|
|
|
|
|
// 空间优化后的动态规划
|
|
|
|
|
res = minPathSumDPComp(grid);
|
|
|
|
|
print("从左上角到右下角的最小路径和为 $res");
|
|
|
|
|
}
|