You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/docs/chapter_divide_and_conquer/hanota_problem.md

98 lines
4.9 KiB

feat: Traditional Chinese version (#1163) * First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology. * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * First commit * Update mkdocs.yml * Translate all the docs to traditional Chinese * Translate the code files. * Translate the docker file * Fix mkdocs.yml * Translate all the figures from SC to TC * 二叉搜尋樹 -> 二元搜尋樹 * Update terminology * 构造函数/构造方法 -> 建構子 异或 -> 互斥或 * 擴充套件 -> 擴展 * constant - 常量 - 常數 * 類 -> 類別 * AVL -> AVL 樹 * 數組 -> 陣列 * 係統 -> 系統 斐波那契數列 -> 費波那契數列 運算元量 -> 運算量 引數 -> 參數 * 聯絡 -> 關聯 * 麵試 -> 面試 * 面向物件 -> 物件導向 歸併排序 -> 合併排序 范式 -> 範式 * Fix 算法 -> 演算法 * 錶示 -> 表示 反碼 -> 一補數 補碼 -> 二補數 列列尾部 -> 佇列尾部 區域性性 -> 區域性 一摞 -> 一疊 * Synchronize with main branch * 賬號 -> 帳號 推匯 -> 推導 * Sync with main branch * Update terminology.md * 操作数量(num. of operations)-> 操作數量 * 字首和->前綴和 * Update figures * 歸 -> 迴 記憶體洩漏 -> 記憶體流失 * Fix the bug of the file filter * 支援 -> 支持 Add zh-Hant/README.md * Add the zh-Hant chapter covers. Bug fixes. * 外掛 -> 擴充功能 * Add the landing page for zh-Hant version * Unify the font of the chapter covers for the zh, en, and zh-Hant version * Move zh-Hant/ to zh-hant/ * Translate terminology.md to traditional Chinese
8 months ago
# 河內塔問題
在合併排序和構建二元樹中,我們都是將原問題分解為兩個規模為原問題一半的子問題。然而對於河內塔問題,我們採用不同的分解策略。
!!! question
給定三根柱子,記為 `A`、`B` 和 `C` 。起始狀態下,柱子 `A` 上套著 $n$ 個圓盤,它們從上到下按照從小到大的順序排列。我們的任務是要把這 $n$ 個圓盤移到柱子 `C` 上,並保持它們的原有順序不變(如下圖所示)。在移動圓盤的過程中,需要遵守以下規則。
1. 圓盤只能從一根柱子頂部拿出,從另一根柱子頂部放入。
2. 每次只能移動一個圓盤。
3. 小圓盤必須時刻位於大圓盤之上。
![河內塔問題示例](hanota_problem.assets/hanota_example.png)
**我們將規模為 $i$ 的河內塔問題記作 $f(i)$** 。例如 $f(3)$ 代表將 $3$ 個圓盤從 `A` 移動至 `C` 的河內塔問題。
### 考慮基本情況
如下圖所示,對於問題 $f(1)$ ,即當只有一個圓盤時,我們將它直接從 `A` 移動至 `C` 即可。
=== "<1>"
![規模為 1 的問題的解](hanota_problem.assets/hanota_f1_step1.png)
=== "<2>"
![hanota_f1_step2](hanota_problem.assets/hanota_f1_step2.png)
如下圖所示,對於問題 $f(2)$ ,即當有兩個圓盤時,**由於要時刻滿足小圓盤在大圓盤之上,因此需要藉助 `B` 來完成移動**。
1. 先將上面的小圓盤從 `A` 移至 `B`
2. 再將大圓盤從 `A` 移至 `C`
3. 最後將小圓盤從 `B` 移至 `C`
=== "<1>"
![規模為 2 的問題的解](hanota_problem.assets/hanota_f2_step1.png)
=== "<2>"
![hanota_f2_step2](hanota_problem.assets/hanota_f2_step2.png)
=== "<3>"
![hanota_f2_step3](hanota_problem.assets/hanota_f2_step3.png)
=== "<4>"
![hanota_f2_step4](hanota_problem.assets/hanota_f2_step4.png)
解決問題 $f(2)$ 的過程可總結為:**將兩個圓盤藉助 `B``A` 移至 `C`** 。其中,`C` 稱為目標柱、`B` 稱為緩衝柱。
### 子問題分解
對於問題 $f(3)$ ,即當有三個圓盤時,情況變得稍微複雜了一些。
因為已知 $f(1)$ 和 $f(2)$ 的解,所以我們可從分治角度思考,**將 `A` 頂部的兩個圓盤看作一個整體**,執行下圖所示的步驟。這樣三個圓盤就被順利地從 `A` 移至 `C` 了。
1.`B` 為目標柱、`C` 為緩衝柱,將兩個圓盤從 `A` 移至 `B`
2.`A` 中剩餘的一個圓盤從 `A` 直接移動至 `C`
3.`C` 為目標柱、`A` 為緩衝柱,將兩個圓盤從 `B` 移至 `C`
=== "<1>"
![規模為 3 的問題的解](hanota_problem.assets/hanota_f3_step1.png)
=== "<2>"
![hanota_f3_step2](hanota_problem.assets/hanota_f3_step2.png)
=== "<3>"
![hanota_f3_step3](hanota_problem.assets/hanota_f3_step3.png)
=== "<4>"
![hanota_f3_step4](hanota_problem.assets/hanota_f3_step4.png)
從本質上看,**我們將問題 $f(3)$ 劃分為兩個子問題 $f(2)$ 和一個子問題 $f(1)$** 。按順序解決這三個子問題之後,原問題隨之得到解決。這說明子問題是獨立的,而且解可以合併。
至此,我們可總結出下圖所示的解決河內塔問題的分治策略:將原問題 $f(n)$ 劃分為兩個子問題 $f(n-1)$ 和一個子問題 $f(1)$ ,並按照以下順序解決這三個子問題。
1. 將 $n-1$ 個圓盤藉助 `C``A` 移至 `B`
2. 將剩餘 $1$ 個圓盤從 `A` 直接移至 `C`
3. 將 $n-1$ 個圓盤藉助 `A``B` 移至 `C`
對於這兩個子問題 $f(n-1)$ **可以透過相同的方式進行遞迴劃分**,直至達到最小子問題 $f(1)$ 。而 $f(1)$ 的解是已知的,只需一次移動操作即可。
![解決河內塔問題的分治策略](hanota_problem.assets/hanota_divide_and_conquer.png)
### 程式碼實現
在程式碼中,我們宣告一個遞迴函式 `dfs(i, src, buf, tar)` ,它的作用是將柱 `src` 頂部的 $i$ 個圓盤藉助緩衝柱 `buf` 移動至目標柱 `tar`
```src
[file]{hanota}-[class]{}-[func]{solve_hanota}
```
如下圖所示,河內塔問題形成一棵高度為 $n$ 的遞迴樹,每個節點代表一個子問題,對應一個開啟的 `dfs()` 函式,**因此時間複雜度為 $O(2^n)$ ,空間複雜度為 $O(n)$** 。
![河內塔問題的遞迴樹](hanota_problem.assets/hanota_recursive_tree.png)
!!! quote
河內塔問題源自一個古老的傳說。在古印度的一個寺廟裡,僧侶們有三根高大的鑽石柱子,以及 $64$ 個大小不一的金圓盤。僧侶們不斷地移動圓盤,他們相信在最後一個圓盤被正確放置的那一刻,這個世界就會結束。
然而,即使僧侶們每秒鐘移動一次,總共需要大約 $2^{64} \approx 1.84×10^{19}$ 秒,合約 $5850$ 億年,遠遠超過了現在對宇宙年齡的估計。所以,倘若這個傳說是真的,我們應該不需要擔心世界末日的到來。