You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
221 lines
7.1 KiB
221 lines
7.1 KiB
7 months ago
|
/**
|
||
|
* File: avl_tree.java
|
||
|
* Created Time: 2022-12-10
|
||
|
* Author: krahets (krahets@163.com)
|
||
|
*/
|
||
|
|
||
|
package chapter_tree;
|
||
|
|
||
|
import utils.*;
|
||
|
|
||
|
/* AVL tree */
|
||
|
class AVLTree {
|
||
|
TreeNode root; // Root node
|
||
|
|
||
|
/* Get node height */
|
||
|
public int height(TreeNode node) {
|
||
|
// Empty node height is -1, leaf node height is 0
|
||
|
return node == null ? -1 : node.height;
|
||
|
}
|
||
|
|
||
|
/* Update node height */
|
||
|
private void updateHeight(TreeNode node) {
|
||
|
// Node height equals the height of the tallest subtree + 1
|
||
|
node.height = Math.max(height(node.left), height(node.right)) + 1;
|
||
|
}
|
||
|
|
||
|
/* Get balance factor */
|
||
|
public int balanceFactor(TreeNode node) {
|
||
|
// Empty node balance factor is 0
|
||
|
if (node == null)
|
||
|
return 0;
|
||
|
// Node balance factor = left subtree height - right subtree height
|
||
|
return height(node.left) - height(node.right);
|
||
|
}
|
||
|
|
||
|
/* Right rotation operation */
|
||
|
private TreeNode rightRotate(TreeNode node) {
|
||
|
TreeNode child = node.left;
|
||
|
TreeNode grandChild = child.right;
|
||
|
// Rotate node to the right around child
|
||
|
child.right = node;
|
||
|
node.left = grandChild;
|
||
|
// Update node height
|
||
|
updateHeight(node);
|
||
|
updateHeight(child);
|
||
|
// Return the root of the subtree after rotation
|
||
|
return child;
|
||
|
}
|
||
|
|
||
|
/* Left rotation operation */
|
||
|
private TreeNode leftRotate(TreeNode node) {
|
||
|
TreeNode child = node.right;
|
||
|
TreeNode grandChild = child.left;
|
||
|
// Rotate node to the left around child
|
||
|
child.left = node;
|
||
|
node.right = grandChild;
|
||
|
// Update node height
|
||
|
updateHeight(node);
|
||
|
updateHeight(child);
|
||
|
// Return the root of the subtree after rotation
|
||
|
return child;
|
||
|
}
|
||
|
|
||
|
/* Perform rotation operation to restore balance to the subtree */
|
||
|
private TreeNode rotate(TreeNode node) {
|
||
|
// Get the balance factor of node
|
||
|
int balanceFactor = balanceFactor(node);
|
||
|
// Left-leaning tree
|
||
|
if (balanceFactor > 1) {
|
||
|
if (balanceFactor(node.left) >= 0) {
|
||
|
// Right rotation
|
||
|
return rightRotate(node);
|
||
|
} else {
|
||
|
// First left rotation then right rotation
|
||
|
node.left = leftRotate(node.left);
|
||
|
return rightRotate(node);
|
||
|
}
|
||
|
}
|
||
|
// Right-leaning tree
|
||
|
if (balanceFactor < -1) {
|
||
|
if (balanceFactor(node.right) <= 0) {
|
||
|
// Left rotation
|
||
|
return leftRotate(node);
|
||
|
} else {
|
||
|
// First right rotation then left rotation
|
||
|
node.right = rightRotate(node.right);
|
||
|
return leftRotate(node);
|
||
|
}
|
||
|
}
|
||
|
// Balanced tree, no rotation needed, return
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/* Insert node */
|
||
|
public void insert(int val) {
|
||
|
root = insertHelper(root, val);
|
||
|
}
|
||
|
|
||
|
/* Recursively insert node (helper method) */
|
||
|
private TreeNode insertHelper(TreeNode node, int val) {
|
||
|
if (node == null)
|
||
|
return new TreeNode(val);
|
||
|
/* 1. Find insertion position and insert node */
|
||
|
if (val < node.val)
|
||
|
node.left = insertHelper(node.left, val);
|
||
|
else if (val > node.val)
|
||
|
node.right = insertHelper(node.right, val);
|
||
|
else
|
||
|
return node; // Do not insert duplicate nodes, return
|
||
|
updateHeight(node); // Update node height
|
||
|
/* 2. Perform rotation operation to restore balance to the subtree */
|
||
|
node = rotate(node);
|
||
|
// Return the root node of the subtree
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/* Remove node */
|
||
|
public void remove(int val) {
|
||
|
root = removeHelper(root, val);
|
||
|
}
|
||
|
|
||
|
/* Recursively remove node (helper method) */
|
||
|
private TreeNode removeHelper(TreeNode node, int val) {
|
||
|
if (node == null)
|
||
|
return null;
|
||
|
/* 1. Find and remove the node */
|
||
|
if (val < node.val)
|
||
|
node.left = removeHelper(node.left, val);
|
||
|
else if (val > node.val)
|
||
|
node.right = removeHelper(node.right, val);
|
||
|
else {
|
||
|
if (node.left == null || node.right == null) {
|
||
|
TreeNode child = node.left != null ? node.left : node.right;
|
||
|
// Number of child nodes = 0, remove node and return
|
||
|
if (child == null)
|
||
|
return null;
|
||
|
// Number of child nodes = 1, remove node
|
||
|
else
|
||
|
node = child;
|
||
|
} else {
|
||
|
// Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
|
||
|
TreeNode temp = node.right;
|
||
|
while (temp.left != null) {
|
||
|
temp = temp.left;
|
||
|
}
|
||
|
node.right = removeHelper(node.right, temp.val);
|
||
|
node.val = temp.val;
|
||
|
}
|
||
|
}
|
||
|
updateHeight(node); // Update node height
|
||
|
/* 2. Perform rotation operation to restore balance to the subtree */
|
||
|
node = rotate(node);
|
||
|
// Return the root node of the subtree
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/* Search node */
|
||
|
public TreeNode search(int val) {
|
||
|
TreeNode cur = root;
|
||
|
// Loop find, break after passing leaf nodes
|
||
|
while (cur != null) {
|
||
|
// Target node is in cur's right subtree
|
||
|
if (cur.val < val)
|
||
|
cur = cur.right;
|
||
|
// Target node is in cur's left subtree
|
||
|
else if (cur.val > val)
|
||
|
cur = cur.left;
|
||
|
// Found target node, break loop
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
// Return target node
|
||
|
return cur;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public class avl_tree {
|
||
|
static void testInsert(AVLTree tree, int val) {
|
||
|
tree.insert(val);
|
||
|
System.out.println("\nAfter inserting node " + val + ", the AVL tree is ");
|
||
|
PrintUtil.printTree(tree.root);
|
||
|
}
|
||
|
|
||
|
static void testRemove(AVLTree tree, int val) {
|
||
|
tree.remove(val);
|
||
|
System.out.println("\nAfter removing node " + val + ", the AVL tree is ");
|
||
|
PrintUtil.printTree(tree.root);
|
||
|
}
|
||
|
|
||
|
public static void main(String[] args) {
|
||
|
/* Initialize empty AVL tree */
|
||
|
AVLTree avlTree = new AVLTree();
|
||
|
|
||
|
/* Insert node */
|
||
|
// Notice how the AVL tree maintains balance after inserting nodes
|
||
|
testInsert(avlTree, 1);
|
||
|
testInsert(avlTree, 2);
|
||
|
testInsert(avlTree, 3);
|
||
|
testInsert(avlTree, 4);
|
||
|
testInsert(avlTree, 5);
|
||
|
testInsert(avlTree, 8);
|
||
|
testInsert(avlTree, 7);
|
||
|
testInsert(avlTree, 9);
|
||
|
testInsert(avlTree, 10);
|
||
|
testInsert(avlTree, 6);
|
||
|
|
||
|
/* Insert duplicate node */
|
||
|
testInsert(avlTree, 7);
|
||
|
|
||
|
/* Remove node */
|
||
|
// Notice how the AVL tree maintains balance after removing nodes
|
||
|
testRemove(avlTree, 8); // Remove node with degree 0
|
||
|
testRemove(avlTree, 5); // Remove node with degree 1
|
||
|
testRemove(avlTree, 4); // Remove node with degree 2
|
||
|
|
||
|
/* Search node */
|
||
|
TreeNode node = avlTree.search(7);
|
||
|
System.out.println("\nThe found node object is " + node + ", node value = " + node.val);
|
||
|
}
|
||
|
}
|