You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/en/codes/java/chapter_tree/avl_tree.java

221 lines
7.1 KiB

/**
* File: avl_tree.java
* Created Time: 2022-12-10
* Author: krahets (krahets@163.com)
*/
package chapter_tree;
import utils.*;
/* AVL tree */
class AVLTree {
TreeNode root; // Root node
/* Get node height */
public int height(TreeNode node) {
// Empty node height is -1, leaf node height is 0
return node == null ? -1 : node.height;
}
/* Update node height */
private void updateHeight(TreeNode node) {
// Node height equals the height of the tallest subtree + 1
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
/* Get balance factor */
public int balanceFactor(TreeNode node) {
// Empty node balance factor is 0
if (node == null)
return 0;
// Node balance factor = left subtree height - right subtree height
return height(node.left) - height(node.right);
}
/* Right rotation operation */
private TreeNode rightRotate(TreeNode node) {
TreeNode child = node.left;
TreeNode grandChild = child.right;
// Rotate node to the right around child
child.right = node;
node.left = grandChild;
// Update node height
updateHeight(node);
updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Left rotation operation */
private TreeNode leftRotate(TreeNode node) {
TreeNode child = node.right;
TreeNode grandChild = child.left;
// Rotate node to the left around child
child.left = node;
node.right = grandChild;
// Update node height
updateHeight(node);
updateHeight(child);
// Return the root of the subtree after rotation
return child;
}
/* Perform rotation operation to restore balance to the subtree */
private TreeNode rotate(TreeNode node) {
// Get the balance factor of node
int balanceFactor = balanceFactor(node);
// Left-leaning tree
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// Right rotation
return rightRotate(node);
} else {
// First left rotation then right rotation
node.left = leftRotate(node.left);
return rightRotate(node);
}
}
// Right-leaning tree
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// Left rotation
return leftRotate(node);
} else {
// First right rotation then left rotation
node.right = rightRotate(node.right);
return leftRotate(node);
}
}
// Balanced tree, no rotation needed, return
return node;
}
/* Insert node */
public void insert(int val) {
root = insertHelper(root, val);
}
/* Recursively insert node (helper method) */
private TreeNode insertHelper(TreeNode node, int val) {
if (node == null)
return new TreeNode(val);
/* 1. Find insertion position and insert node */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // Do not insert duplicate nodes, return
updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node);
// Return the root node of the subtree
return node;
}
/* Remove node */
public void remove(int val) {
root = removeHelper(root, val);
}
/* Recursively remove node (helper method) */
private TreeNode removeHelper(TreeNode node, int val) {
if (node == null)
return null;
/* 1. Find and remove the node */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else {
if (node.left == null || node.right == null) {
TreeNode child = node.left != null ? node.left : node.right;
// Number of child nodes = 0, remove node and return
if (child == null)
return null;
// Number of child nodes = 1, remove node
else
node = child;
} else {
// Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
TreeNode temp = node.right;
while (temp.left != null) {
temp = temp.left;
}
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // Update node height
/* 2. Perform rotation operation to restore balance to the subtree */
node = rotate(node);
// Return the root node of the subtree
return node;
}
/* Search node */
public TreeNode search(int val) {
TreeNode cur = root;
// Loop find, break after passing leaf nodes
while (cur != null) {
// Target node is in cur's right subtree
if (cur.val < val)
cur = cur.right;
// Target node is in cur's left subtree
else if (cur.val > val)
cur = cur.left;
// Found target node, break loop
else
break;
}
// Return target node
return cur;
}
}
public class avl_tree {
static void testInsert(AVLTree tree, int val) {
tree.insert(val);
System.out.println("\nAfter inserting node " + val + ", the AVL tree is ");
PrintUtil.printTree(tree.root);
}
static void testRemove(AVLTree tree, int val) {
tree.remove(val);
System.out.println("\nAfter removing node " + val + ", the AVL tree is ");
PrintUtil.printTree(tree.root);
}
public static void main(String[] args) {
/* Initialize empty AVL tree */
AVLTree avlTree = new AVLTree();
/* Insert node */
// Notice how the AVL tree maintains balance after inserting nodes
testInsert(avlTree, 1);
testInsert(avlTree, 2);
testInsert(avlTree, 3);
testInsert(avlTree, 4);
testInsert(avlTree, 5);
testInsert(avlTree, 8);
testInsert(avlTree, 7);
testInsert(avlTree, 9);
testInsert(avlTree, 10);
testInsert(avlTree, 6);
/* Insert duplicate node */
testInsert(avlTree, 7);
/* Remove node */
// Notice how the AVL tree maintains balance after removing nodes
testRemove(avlTree, 8); // Remove node with degree 0
testRemove(avlTree, 5); // Remove node with degree 1
testRemove(avlTree, 4); // Remove node with degree 2
/* Search node */
TreeNode node = avlTree.search(7);
System.out.println("\nThe found node object is " + node + ", node value = " + node.val);
}
}