You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/en/docs/chapter_dynamic_programming/intro_to_dynamic_programmin...

747 lines
22 KiB

7 months ago
---
comments: true
---
# 14.1   Introduction to dynamic programming
<u>Dynamic programming</u> is an important algorithmic paradigm that decomposes a problem into a series of smaller subproblems, and stores the solutions of these subproblems to avoid redundant computations, thereby significantly improving time efficiency.
In this section, we start with a classic problem, first presenting its brute force backtracking solution, observing the overlapping subproblems contained within, and then gradually deriving a more efficient dynamic programming solution.
!!! question "Climbing stairs"
Given a staircase with $n$ steps, where you can climb $1$ or $2$ steps at a time, how many different ways are there to reach the top?
7 months ago
As shown in Figure 14-1, there are $3$ ways to reach the top of a $3$-step staircase.
7 months ago
![Number of ways to reach the 3rd step](intro_to_dynamic_programming.assets/climbing_stairs_example.png){ class="animation-figure" }
<p align="center"> Figure 14-1 &nbsp; Number of ways to reach the 3rd step </p>
The goal of this problem is to determine the number of ways, **considering using backtracking to exhaust all possibilities**. Specifically, imagine climbing stairs as a multi-round choice process: starting from the ground, choosing to go up $1$ or $2$ steps each round, adding one to the count of ways upon reaching the top of the stairs, and pruning the process when exceeding the top. The code is as follows:
=== "Python"
```python title="climbing_stairs_backtrack.py"
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
7 months ago
"""Backtracking"""
# When climbing to the nth step, add 1 to the number of solutions
7 months ago
if state == n:
res[0] += 1
7 months ago
# Traverse all choices
7 months ago
for choice in choices:
7 months ago
# Pruning: do not allow climbing beyond the nth step
7 months ago
if state + choice > n:
continue
7 months ago
# Attempt: make a choice, update the state
7 months ago
backtrack(choices, state + choice, n, res)
7 months ago
# Retract
7 months ago
def climbing_stairs_backtrack(n: int) -> int:
7 months ago
"""Climbing stairs: Backtracking"""
choices = [1, 2] # Can choose to climb up 1 step or 2 steps
state = 0 # Start climbing from the 0th step
res = [0] # Use res[0] to record the number of solutions
7 months ago
backtrack(choices, state, n, res)
return res[0]
```
=== "C++"
```cpp title="climbing_stairs_backtrack.cpp"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "Java"
```java title="climbing_stairs_backtrack.java"
7 months ago
/* Backtracking */
7 months ago
void backtrack(List<Integer> choices, int state, int n, List<Integer> res) {
7 months ago
// When climbing to the nth step, add 1 to the number of solutions
7 months ago
if (state == n)
res.set(0, res.get(0) + 1);
7 months ago
// Traverse all choices
7 months ago
for (Integer choice : choices) {
7 months ago
// Pruning: do not allow climbing beyond the nth step
7 months ago
if (state + choice > n)
continue;
7 months ago
// Attempt: make a choice, update the state
7 months ago
backtrack(choices, state + choice, n, res);
7 months ago
// Retract
7 months ago
}
}
7 months ago
/* Climbing stairs: Backtracking */
7 months ago
int climbingStairsBacktrack(int n) {
7 months ago
List<Integer> choices = Arrays.asList(1, 2); // Can choose to climb up 1 step or 2 steps
int state = 0; // Start climbing from the 0th step
7 months ago
List<Integer> res = new ArrayList<>();
7 months ago
res.add(0); // Use res[0] to record the number of solutions
7 months ago
backtrack(choices, state, n, res);
return res.get(0);
}
```
=== "C#"
```csharp title="climbing_stairs_backtrack.cs"
7 months ago
[class]{climbing_stairs_backtrack}-[func]{Backtrack}
7 months ago
7 months ago
[class]{climbing_stairs_backtrack}-[func]{ClimbingStairsBacktrack}
7 months ago
```
=== "Go"
```go title="climbing_stairs_backtrack.go"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "Swift"
```swift title="climbing_stairs_backtrack.swift"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "JS"
```javascript title="climbing_stairs_backtrack.js"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "TS"
```typescript title="climbing_stairs_backtrack.ts"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "Dart"
```dart title="climbing_stairs_backtrack.dart"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "Rust"
```rust title="climbing_stairs_backtrack.rs"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbing_stairs_backtrack}
7 months ago
```
=== "C"
```c title="climbing_stairs_backtrack.c"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "Kotlin"
```kotlin title="climbing_stairs_backtrack.kt"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
=== "Ruby"
```ruby title="climbing_stairs_backtrack.rb"
[class]{}-[func]{backtrack}
[class]{}-[func]{climbing_stairs_backtrack}
```
=== "Zig"
```zig title="climbing_stairs_backtrack.zig"
7 months ago
[class]{}-[func]{backtrack}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsBacktrack}
7 months ago
```
## 14.1.1 &nbsp; Method 1: Brute force search
Backtracking algorithms do not explicitly decompose the problem but treat solving the problem as a series of decision steps, searching for all possible solutions through exploration and pruning.
We can try to analyze this problem from the perspective of decomposition. Let $dp[i]$ be the number of ways to reach the $i^{th}$ step, then $dp[i]$ is the original problem, and its subproblems include:
$$
dp[i-1], dp[i-2], \dots, dp[2], dp[1]
$$
Since each round can only advance $1$ or $2$ steps, when we stand on the $i^{th}$ step, the previous round must have been either on the $i-1^{th}$ or the $i-2^{th}$ step. In other words, we can only step from the $i-1^{th}$ or the $i-2^{th}$ step to the $i^{th}$ step.
This leads to an important conclusion: **the number of ways to reach the $i-1^{th}$ step plus the number of ways to reach the $i-2^{th}$ step equals the number of ways to reach the $i^{th}$ step**. The formula is as follows:
$$
dp[i] = dp[i-1] + dp[i-2]
$$
7 months ago
This means that in the stair climbing problem, there is a recursive relationship between the subproblems, **the solution to the original problem can be constructed from the solutions to the subproblems**. Figure 14-2 shows this recursive relationship.
7 months ago
![Recursive relationship of solution counts](intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png){ class="animation-figure" }
<p align="center"> Figure 14-2 &nbsp; Recursive relationship of solution counts </p>
We can obtain the brute force search solution according to the recursive formula. Starting with $dp[n]$, **recursively decompose a larger problem into the sum of two smaller problems**, until reaching the smallest subproblems $dp[1]$ and $dp[2]$ where the solutions are known, with $dp[1] = 1$ and $dp[2] = 2$, representing $1$ and $2$ ways to climb to the first and second steps, respectively.
Observe the following code, which, like standard backtracking code, belongs to depth-first search but is more concise:
=== "Python"
```python title="climbing_stairs_dfs.py"
def dfs(i: int) -> int:
7 months ago
"""Search"""
# Known dp[1] and dp[2], return them
7 months ago
if i == 1 or i == 2:
return i
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1) + dfs(i - 2)
return count
def climbing_stairs_dfs(n: int) -> int:
7 months ago
"""Climbing stairs: Search"""
7 months ago
return dfs(n)
```
=== "C++"
```cpp title="climbing_stairs_dfs.cpp"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "Java"
```java title="climbing_stairs_dfs.java"
7 months ago
/* Search */
7 months ago
int dfs(int i) {
7 months ago
// Known dp[1] and dp[2], return them
7 months ago
if (i == 1 || i == 2)
return i;
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1) + dfs(i - 2);
return count;
}
7 months ago
/* Climbing stairs: Search */
7 months ago
int climbingStairsDFS(int n) {
return dfs(n);
}
```
=== "C#"
```csharp title="climbing_stairs_dfs.cs"
7 months ago
[class]{climbing_stairs_dfs}-[func]{DFS}
7 months ago
7 months ago
[class]{climbing_stairs_dfs}-[func]{ClimbingStairsDFS}
7 months ago
```
=== "Go"
```go title="climbing_stairs_dfs.go"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "Swift"
```swift title="climbing_stairs_dfs.swift"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "JS"
```javascript title="climbing_stairs_dfs.js"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "TS"
```typescript title="climbing_stairs_dfs.ts"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "Dart"
```dart title="climbing_stairs_dfs.dart"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "Rust"
```rust title="climbing_stairs_dfs.rs"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbing_stairs_dfs}
7 months ago
```
=== "C"
```c title="climbing_stairs_dfs.c"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "Kotlin"
```kotlin title="climbing_stairs_dfs.kt"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
=== "Ruby"
```ruby title="climbing_stairs_dfs.rb"
[class]{}-[func]{dfs}
[class]{}-[func]{climbing_stairs_dfs}
```
=== "Zig"
```zig title="climbing_stairs_dfs.zig"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFS}
7 months ago
```
7 months ago
Figure 14-3 shows the recursive tree formed by brute force search. For the problem $dp[n]$, the depth of its recursive tree is $n$, with a time complexity of $O(2^n)$. Exponential order represents explosive growth, and entering a long wait if a relatively large $n$ is input.
7 months ago
![Recursive tree for climbing stairs](intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png){ class="animation-figure" }
<p align="center"> Figure 14-3 &nbsp; Recursive tree for climbing stairs </p>
7 months ago
Observing Figure 14-3, **the exponential time complexity is caused by 'overlapping subproblems'**. For example, $dp[9]$ is decomposed into $dp[8]$ and $dp[7]$, $dp[8]$ into $dp[7]$ and $dp[6]$, both containing the subproblem $dp[7]$.
7 months ago
Thus, subproblems include even smaller overlapping subproblems, endlessly. A vast majority of computational resources are wasted on these overlapping subproblems.
## 14.1.2 &nbsp; Method 2: Memoized search
To enhance algorithm efficiency, **we hope that all overlapping subproblems are calculated only once**. For this purpose, we declare an array `mem` to record the solution of each subproblem, and prune overlapping subproblems during the search process.
1. When $dp[i]$ is calculated for the first time, we record it in `mem[i]` for later use.
2. When $dp[i]$ needs to be calculated again, we can directly retrieve the result from `mem[i]`, thus avoiding redundant calculations of that subproblem.
The code is as follows:
=== "Python"
```python title="climbing_stairs_dfs_mem.py"
def dfs(i: int, mem: list[int]) -> int:
7 months ago
"""Memoized search"""
# Known dp[1] and dp[2], return them
7 months ago
if i == 1 or i == 2:
return i
7 months ago
# If there is a record for dp[i], return it
7 months ago
if mem[i] != -1:
return mem[i]
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1, mem) + dfs(i - 2, mem)
7 months ago
# Record dp[i]
7 months ago
mem[i] = count
return count
def climbing_stairs_dfs_mem(n: int) -> int:
7 months ago
"""Climbing stairs: Memoized search"""
# mem[i] records the total number of solutions for climbing to the ith step, -1 means no record
7 months ago
mem = [-1] * (n + 1)
return dfs(n, mem)
```
=== "C++"
```cpp title="climbing_stairs_dfs_mem.cpp"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "Java"
```java title="climbing_stairs_dfs_mem.java"
7 months ago
/* Memoized search */
7 months ago
int dfs(int i, int[] mem) {
7 months ago
// Known dp[1] and dp[2], return them
7 months ago
if (i == 1 || i == 2)
return i;
7 months ago
// If there is a record for dp[i], return it
7 months ago
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
7 months ago
// Record dp[i]
7 months ago
mem[i] = count;
return count;
}
7 months ago
/* Climbing stairs: Memoized search */
7 months ago
int climbingStairsDFSMem(int n) {
7 months ago
// mem[i] records the total number of solutions for climbing to the ith step, -1 means no record
7 months ago
int[] mem = new int[n + 1];
Arrays.fill(mem, -1);
return dfs(n, mem);
}
```
=== "C#"
```csharp title="climbing_stairs_dfs_mem.cs"
7 months ago
[class]{climbing_stairs_dfs_mem}-[func]{DFS}
7 months ago
7 months ago
[class]{climbing_stairs_dfs_mem}-[func]{ClimbingStairsDFSMem}
7 months ago
```
=== "Go"
```go title="climbing_stairs_dfs_mem.go"
7 months ago
[class]{}-[func]{dfsMem}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "Swift"
```swift title="climbing_stairs_dfs_mem.swift"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "JS"
```javascript title="climbing_stairs_dfs_mem.js"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "TS"
```typescript title="climbing_stairs_dfs_mem.ts"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "Dart"
```dart title="climbing_stairs_dfs_mem.dart"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "Rust"
```rust title="climbing_stairs_dfs_mem.rs"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbing_stairs_dfs_mem}
7 months ago
```
=== "C"
```c title="climbing_stairs_dfs_mem.c"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "Kotlin"
```kotlin title="climbing_stairs_dfs_mem.kt"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
=== "Ruby"
```ruby title="climbing_stairs_dfs_mem.rb"
[class]{}-[func]{dfs}
[class]{}-[func]{climbing_stairs_dfs_mem}
```
=== "Zig"
```zig title="climbing_stairs_dfs_mem.zig"
7 months ago
[class]{}-[func]{dfs}
7 months ago
7 months ago
[class]{}-[func]{climbingStairsDFSMem}
7 months ago
```
7 months ago
Observe Figure 14-4, **after memoization, all overlapping subproblems need to be calculated only once, optimizing the time complexity to $O(n)$**, which is a significant leap.
7 months ago
![Recursive tree with memoized search](intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png){ class="animation-figure" }
<p align="center"> Figure 14-4 &nbsp; Recursive tree with memoized search </p>
## 14.1.3 &nbsp; Method 3: Dynamic programming
**Memoized search is a 'top-down' method**: we start with the original problem (root node), recursively decompose larger subproblems into smaller ones until the solutions to the smallest known subproblems (leaf nodes) are reached. Subsequently, by backtracking, we collect the solutions of the subproblems, constructing the solution to the original problem.
On the contrary, **dynamic programming is a 'bottom-up' method**: starting with the solutions to the smallest subproblems, iteratively construct the solutions to larger subproblems until the original problem is solved.
Since dynamic programming does not include a backtracking process, it only requires looping iteration to implement, without needing recursion. In the following code, we initialize an array `dp` to store the solutions to the subproblems, serving the same recording function as the array `mem` in memoized search:
=== "Python"
```python title="climbing_stairs_dp.py"
def climbing_stairs_dp(n: int) -> int:
7 months ago
"""Climbing stairs: Dynamic programming"""
7 months ago
if n == 1 or n == 2:
return n
7 months ago
# Initialize dp table, used to store subproblem solutions
7 months ago
dp = [0] * (n + 1)
7 months ago
# Initial state: preset the smallest subproblem solution
7 months ago
dp[1], dp[2] = 1, 2
7 months ago
# State transition: gradually solve larger subproblems from smaller ones
7 months ago
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
```
=== "C++"
```cpp title="climbing_stairs_dp.cpp"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "Java"
```java title="climbing_stairs_dp.java"
7 months ago
/* Climbing stairs: Dynamic programming */
7 months ago
int climbingStairsDP(int n) {
if (n == 1 || n == 2)
return n;
7 months ago
// Initialize dp table, used to store subproblem solutions
7 months ago
int[] dp = new int[n + 1];
7 months ago
// Initial state: preset the smallest subproblem solution
7 months ago
dp[1] = 1;
dp[2] = 2;
7 months ago
// State transition: gradually solve larger subproblems from smaller ones
7 months ago
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
```
=== "C#"
```csharp title="climbing_stairs_dp.cs"
7 months ago
[class]{climbing_stairs_dp}-[func]{ClimbingStairsDP}
7 months ago
```
=== "Go"
```go title="climbing_stairs_dp.go"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "Swift"
```swift title="climbing_stairs_dp.swift"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "JS"
```javascript title="climbing_stairs_dp.js"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "TS"
```typescript title="climbing_stairs_dp.ts"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "Dart"
```dart title="climbing_stairs_dp.dart"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "Rust"
```rust title="climbing_stairs_dp.rs"
7 months ago
[class]{}-[func]{climbing_stairs_dp}
7 months ago
```
=== "C"
```c title="climbing_stairs_dp.c"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "Kotlin"
```kotlin title="climbing_stairs_dp.kt"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
=== "Ruby"
```ruby title="climbing_stairs_dp.rb"
[class]{}-[func]{climbing_stairs_dp}
```
=== "Zig"
```zig title="climbing_stairs_dp.zig"
7 months ago
[class]{}-[func]{climbingStairsDP}
7 months ago
```
7 months ago
Figure 14-5 simulates the execution process of the above code.
7 months ago
![Dynamic programming process for climbing stairs](intro_to_dynamic_programming.assets/climbing_stairs_dp.png){ class="animation-figure" }
<p align="center"> Figure 14-5 &nbsp; Dynamic programming process for climbing stairs </p>
Like the backtracking algorithm, dynamic programming also uses the concept of "states" to represent specific stages in problem solving, each state corresponding to a subproblem and its local optimal solution. For example, the state of the climbing stairs problem is defined as the current step number $i$.
Based on the above content, we can summarize the commonly used terminology in dynamic programming.
- The array `dp` is referred to as the <u>DP table</u>, with $dp[i]$ representing the solution to the subproblem corresponding to state $i$.
- The states corresponding to the smallest subproblems (steps $1$ and $2$) are called <u>initial states</u>.
- The recursive formula $dp[i] = dp[i-1] + dp[i-2]$ is called the <u>state transition equation</u>.
## 14.1.4 &nbsp; Space optimization
Observant readers may have noticed that **since $dp[i]$ is only related to $dp[i-1]$ and $dp[i-2]$, we do not need to use an array `dp` to store the solutions to all subproblems**, but can simply use two variables to progress iteratively. The code is as follows:
=== "Python"
```python title="climbing_stairs_dp.py"
def climbing_stairs_dp_comp(n: int) -> int:
7 months ago
"""Climbing stairs: Space-optimized dynamic programming"""
7 months ago
if n == 1 or n == 2:
return n
a, b = 1, 2
for _ in range(3, n + 1):
a, b = b, a + b
return b
```
=== "C++"
```cpp title="climbing_stairs_dp.cpp"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "Java"
```java title="climbing_stairs_dp.java"
7 months ago
/* Climbing stairs: Space-optimized dynamic programming */
7 months ago
int climbingStairsDPComp(int n) {
if (n == 1 || n == 2)
return n;
int a = 1, b = 2;
for (int i = 3; i <= n; i++) {
int tmp = b;
b = a + b;
a = tmp;
}
return b;
}
```
=== "C#"
```csharp title="climbing_stairs_dp.cs"
7 months ago
[class]{climbing_stairs_dp}-[func]{ClimbingStairsDPComp}
7 months ago
```
=== "Go"
```go title="climbing_stairs_dp.go"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "Swift"
```swift title="climbing_stairs_dp.swift"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "JS"
```javascript title="climbing_stairs_dp.js"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "TS"
```typescript title="climbing_stairs_dp.ts"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "Dart"
```dart title="climbing_stairs_dp.dart"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "Rust"
```rust title="climbing_stairs_dp.rs"
7 months ago
[class]{}-[func]{climbing_stairs_dp_comp}
7 months ago
```
=== "C"
```c title="climbing_stairs_dp.c"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "Kotlin"
```kotlin title="climbing_stairs_dp.kt"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
=== "Ruby"
```ruby title="climbing_stairs_dp.rb"
[class]{}-[func]{climbing_stairs_dp_comp}
```
=== "Zig"
```zig title="climbing_stairs_dp.zig"
7 months ago
[class]{}-[func]{climbingStairsDPComp}
7 months ago
```
Observing the above code, since the space occupied by the array `dp` is eliminated, the space complexity is reduced from $O(n)$ to $O(1)$.
In dynamic programming problems, the current state is often only related to a limited number of previous states, allowing us to retain only the necessary states and save memory space by "dimension reduction". **This space optimization technique is known as 'rolling variable' or 'rolling array'**.