You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/python/chapter_heap/my_heap.py

146 lines
4.0 KiB

"""
File: my_heap.py
Created Time: 2023-02-23
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class MaxHeap:
""" 大顶堆 """
def __init__(self, nums: List[int]):
""" 构造方法 """
# 将列表元素原封不动添加进堆
self.max_heap = nums
# 堆化除叶结点以外的其他所有结点
for i in range(self.parent(self.size() - 1), -1, -1):
self.sift_down(i)
def left(self, i: int) -> int:
""" 获取左子结点索引 """
return 2 * i + 1
def right(self, i: int) -> int:
""" 获取右子结点索引 """
return 2 * i + 2
def parent(self, i: int) -> int:
""" 获取父结点索引 """
return (i - 1) // 2 # 向下整除
def swap(self, i: int, j: int):
""" 交换元素 """
a, b = self.max_heap[i], self.max_heap[j]
self.max_heap[i], self.max_heap[j] = b, a
def size(self) -> int:
""" 获取堆大小 """
return len(self.max_heap)
def is_empty(self) -> bool:
""" 判断堆是否为空 """
return self.size() == 0
def peek(self) -> int:
""" 访问堆顶元素 """
return self.max_heap[0]
def push(self, val: int):
""" 元素入堆 """
# 添加结点
self.max_heap.append(val)
# 从底至顶堆化
self.sift_up(self.size() - 1)
def sift_up(self, i: int):
""" 从结点 i 开始,从底至顶堆化 """
while True:
# 获取结点 i 的父结点
p = self.parent(i)
# 当“越过根结点”或“结点无需修复”时,结束堆化
if p < 0 or self.max_heap[i] <= self.max_heap[p]:
break
# 交换两结点
self.swap(i, p)
# 循环向上堆化
i = p
def poll(self) -> int:
""" 元素出堆 """
# 判空处理
assert not self.is_empty()
# 交换根结点与最右叶结点(即交换首元素与尾元素)
self.swap(0, self.size() - 1)
# 删除结点
val = self.max_heap.pop()
# 从顶至底堆化
self.sift_down(0)
# 返回堆顶元素
return val
def sift_down(self, i: int):
""" 从结点 i 开始,从顶至底堆化 """
while True:
# 判断结点 i, l, r 中值最大的结点,记为 ma
l, r, ma = self.left(i), self.right(i), i
if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
ma = l
if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
ma = r
# 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
if ma == i:
break
# 交换两结点
self.swap(i, ma)
# 循环向下堆化
i = ma
def print(self):
""" 打印堆(二叉树) """
print_heap(self.max_heap)
def test_push(max_heap: MaxHeap, val: int):
max_heap.push(val) # 元素入堆
print(f"\n添加元素 {val}\n")
max_heap.print()
def test_poll(max_heap: MaxHeap):
val = max_heap.poll() # 堆顶元素出堆
print(f"\n出堆元素为 {val}\n")
max_heap.print()
""" Driver Code """
if __name__ == "__main__":
# 初始化大顶堆
max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
print("\n输入列表并建堆后")
max_heap.print()
# 获取堆顶元素
peek = max_heap.peek()
print(f"\n堆顶元素为 {peek}")
# 元素入堆
val = 7
max_heap.push(val)
print(f"\n元素 {val} 入堆后")
max_heap.print()
# 堆顶元素出堆
peek = max_heap.poll()
print(f"\n堆顶元素 {peek} 出堆后")
max_heap.print()
# 获取堆大小
size = max_heap.size()
print(f"\n堆元素数量为 {size}")
# 判断堆是否为空
is_empty = max_heap.is_empty()
print(f"\n堆是否为空 {is_empty}")