You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_hashing/hash_collision.md

261 lines
9.4 KiB

# 哈希冲突
在理想情况下,哈希函数应为每个输入生成唯一的输出,实现 key 和 value 的一一对应。然而实际上,向哈希函数输入不同的 key 却产生相同输出的情况是存在的,这种现象被称为「哈希冲突 Hash Collision」。哈希冲突可能导致查询结果错误从而严重影响哈希表的可用性。
那么,为何会出现哈希冲突呢?从本质上看,由于哈希函数的输入空间通常远大于输出空间,因此多个输入产生相同输出的情况是不可避免的。例如,若输入空间为全体整数,而输出空间为固定大小的数组,则必然有多个整数映射至同一数组索引。
为了减轻哈希冲突,一方面,**可以通过扩大哈希表容量来降低冲突概率**。极端情况下,当输入空间和输出空间大小相等时,哈希表等同于数组,每个 key 都对应唯一的数组索引,可谓“大力出奇迹”。
另一方面,**可以考虑优化哈希表的表示以缓解哈希冲突**,常用方法包括「链式地址 Separate Chaining」和「开放寻址 Open Addressing」。
## 哈希表扩容
哈希函数的最后一步通常是对桶数量 $n$ 取余,作用是将哈希值映射到桶索引范围,从而将 key 放入对应的桶中。当哈希表容量越大(即 $n$ 越大)时,多个 key 被分配到同一个桶中的概率就越低,冲突就越少。
因此,**当哈希表内的冲突总体较为严重时,编程语言通常通过扩容哈希表来缓解冲突**。类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,开销较大。
编程语言通常使用「负载因子 Load Factor」来衡量哈希冲突的严重程度**定义为哈希表中元素数量除以桶数量**,常作为哈希表扩容的触发条件。在 Java 中,当负载因子超过 $ 0.75$ 时,系统会将 HashMap 容量扩展为原先的 $2$ 倍。
## 链式地址
在原始哈希表中,每个桶仅能存储一个键值对。**链式地址将单个元素转换为链表,将键值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中**。
![链式地址哈希表](hash_collision.assets/hash_collision_chaining.png)
链式地址下,哈希表的操作方法包括:
- **查询元素**:输入 key ,经过哈希函数得到数组索引,即可访问链表头节点,然后遍历链表并对比 key 以查找目标键值对。
- **添加元素**:先通过哈希函数访问链表头节点,然后将节点(即键值对)添加到链表中。
- **删除元素**:根据哈希函数的结果访问链表头部,接着遍历链表以查找目标节点,并将其删除。
尽管链式地址法解决了哈希冲突问题,但仍存在一些局限性,包括:
- **占用空间增大**,由于链表或二叉树包含节点指针,相比数组更加耗费内存空间;
- **查询效率降低**,因为需要线性遍历链表来查找对应元素;
以下给出了链式地址哈希表的简单实现,需要注意:
- 为了使得代码尽量简短,我们使用列表(动态数组)代替链表。换句话说,哈希表(数组)包含多个桶,每个桶都是一个列表。
- 以下代码实现了哈希表扩容方法。具体来看,当负载因子超过 $0.75$ 时,我们将哈希表扩容至 $2$ 倍。
=== "Java"
```java title="hash_map_chaining.java"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "C++"
```cpp title="hash_map_chaining.cpp"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Python"
```python title="hash_map_chaining.py"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Go"
```go title="hash_map_chaining.go"
[class]{pair}-[func]{}
[class]{hashMapChaining}-[func]{}
```
=== "JavaScript"
```javascript title="hash_map_chaining.js"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "TypeScript"
```typescript title="hash_map_chaining.ts"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "C"
```c title="hash_map_chaining.c"
[class]{pair}-[func]{}
[class]{hashMapChaining}-[func]{}
```
=== "C#"
```csharp title="hash_map_chaining.cs"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Swift"
```swift title="hash_map_chaining.swift"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Zig"
```zig title="hash_map_chaining.zig"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
=== "Dart"
```dart title="hash_map_chaining.dart"
[class]{Pair}-[func]{}
[class]{HashMapChaining}-[func]{}
```
!!! tip
为了提高效率,**我们可以将链表转换为「AVL 树」或「红黑树」**,从而将查询操作的时间复杂度优化至 $O(\log n)$ 。
## 开放寻址
开放寻址法不引入额外的数据结构,而是通过“多次探测”来解决哈希冲突,**探测方式主要包括线性探测、平方探测、多次哈希**。
### 线性探测
线性探测采用固定步长的线性查找来解决哈希冲突。
- **插入元素**:通过哈希函数计算数组索引,若发现桶内已有元素,则从冲突位置向后线性遍历(步长通常为 $1$ ),直至找到空位,将元素插入其中。
- **查找元素**:若发现哈希冲突,则使用相同步长向后线性遍历,直到找到对应元素,返回 value 即可;或者若遇到空位,说明目标键值对不在哈希表中,返回 $\text{None}$ 。
![线性探测](hash_collision.assets/hash_collision_linear_probing.png)
然而,线性探测存在以下缺陷:
- **不能直接删除元素**。删除元素会在数组内产生一个空位,查找其他元素时,该空位可能导致程序误判元素不存在。因此,需要借助一个标志位来标记已删除元素。
- **容易产生聚集**。数组内连续被占用位置越长,这些连续位置发生哈希冲突的可能性越大,进一步促使这一位置的“聚堆生长”,最终导致增删查改操作效率降低。
如以下代码所示,为开放寻址(线性探测)哈希表的简单实现,重点包括:
- 我们使用一个固定的键值对实例 `removed` 来标记已删除元素。也就是说,当一个桶为 $\text{None}$ 或 `removed` 时,这个桶都是空的,可用于放置键值对。
- 被标记为已删除的空间是可以再次被使用的。当插入元素时,若通过哈希函数找到了被标记为已删除的索引,则可将该元素放置到该索引。
- 在线性探测时,我们从当前索引 `index` 向后遍历;而当越过数组尾部时,需要回到头部继续遍历。
=== "Java"
```java title="hash_map_open_addressing.java"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "C++"
```cpp title="hash_map_open_addressing.cpp"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Python"
```python title="hash_map_open_addressing.py"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Go"
```go title="hash_map_open_addressing.go"
[class]{pair}-[func]{}
[class]{hashMapOpenAddressing}-[func]{}
```
=== "JavaScript"
```javascript title="hash_map_open_addressing.js"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "TypeScript"
```typescript title="hash_map_open_addressing.ts"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "C"
```c title="hash_map_open_addressing.c"
[class]{pair}-[func]{}
[class]{hashMapOpenAddressing}-[func]{}
```
=== "C#"
```csharp title="hash_map_open_addressing.cs"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Swift"
```swift title="hash_map_open_addressing.swift"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Zig"
```zig title="hash_map_open_addressing.zig"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
=== "Dart"
```dart title="hash_map_open_addressing.dart"
[class]{Pair}-[func]{}
[class]{HashMapOpenAddressing}-[func]{}
```
### 多次哈希
顾名思义,多次哈希方法是使用多个哈希函数 $f_1(x)$ , $f_2(x)$ , $f_3(x)$ , $\cdots$ 进行探测。
- **插入元素**:若哈希函数 $f_1(x)$ 出现冲突,则尝试 $f_2(x)$ ,以此类推,直到找到空位后插入元素。
- **查找元素**:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;或遇到空位或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 $\text{None}$ 。
与线性探测相比,多次哈希方法不易产生聚集,但多个哈希函数会增加额外的计算量。
!!! note "编程语言的选择"
Java 采用「链式地址」。自 JDK 1.8 以来,当 HashMap 内数组长度达到 64 且链表长度达到 8 时,链表会被转换为红黑树以提升查找性能。
Python 采用「开放寻址」。字典 dict 使用伪随机数进行探测。
Golang 采用「链式地址」。Go 规定每个桶最多存储 8 个键值对,超出容量则连接一个溢出桶;当溢出桶过多时,会执行一次特殊的等量扩容操作,以确保性能。