|
|
|
|
---
|
|
|
|
|
comments: true
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# 二叉树
|
|
|
|
|
|
|
|
|
|
「二叉树 Binary Tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着 “一分为二” 的分治逻辑。类似于链表,二叉树也是以结点为单位存储的,结点包含「值」和两个「指针」。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java
|
|
|
|
|
/* 链表结点类 */
|
|
|
|
|
class TreeNode {
|
|
|
|
|
int val; // 结点值
|
|
|
|
|
TreeNode left; // 左子结点指针
|
|
|
|
|
TreeNode right; // 右子结点指针
|
|
|
|
|
TreeNode(int x) { val = x; }
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
结点的两个指针分别指向「左子结点 Left Child Node」和「右子结点 Right Child Node」,并且称该结点为两个子结点的「父结点 Parent Node」。给定二叉树某结点,将左子结点以下的树称为该结点的「左子树 Left Subtree」,右子树同理。
|
|
|
|
|
|
|
|
|
|
![binary_tree_definition](binary_tree.assets/binary_tree_definition.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 子结点与子树 </p>
|
|
|
|
|
|
|
|
|
|
需要注意,父结点、子结点、子树是可以向下递推的。例如,如果将上图的「结点 2」看作父结点,那么其左子结点和右子结点分别为「结点 4」和「结点 5」,左子树和右子树分别为「结点 4 以下的树」和「结点 5 以下的树」。
|
|
|
|
|
|
|
|
|
|
## 二叉树常见术语
|
|
|
|
|
|
|
|
|
|
「根结点 Root Node」:二叉树最顶层的结点,其没有父结点;
|
|
|
|
|
|
|
|
|
|
「叶结点 Leaf Node」:没有子结点的结点,其两个指针都指向 $\text{null}$ ;
|
|
|
|
|
|
|
|
|
|
结点「度 Degree」:结点的子结点数量,二叉树中度的范围是 0, 1, 2 ;
|
|
|
|
|
|
|
|
|
|
结点「深度 Depth」 :根结点到该结点的层数;
|
|
|
|
|
|
|
|
|
|
结点「高度 Height」:最远叶结点到该结点的层数;
|
|
|
|
|
|
|
|
|
|
二叉树「高度」:二叉树中根结点到最远叶结点的层数;
|
|
|
|
|
|
|
|
|
|
![binary_tree_terminology](binary_tree.assets/binary_tree_terminology.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 二叉树的常见术语 </p>
|
|
|
|
|
|
|
|
|
|
## 二叉树最佳和最差结构
|
|
|
|
|
|
|
|
|
|
当二叉树的每层的结点都被填满时,达到「完美二叉树」;而当所有结点都偏向一边时,二叉树退化为「链表」。
|
|
|
|
|
|
|
|
|
|
![binary_tree_corner_cases](binary_tree.assets/binary_tree_corner_cases.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 二叉树的最佳和最差结构 </p>
|
|
|
|
|
|
|
|
|
|
在最佳和最差结构下,二叉树的结点数量和高度等性质达到最大(最小)值。
|
|
|
|
|
|
|
|
|
|
<div class="center-table" markdown>
|
|
|
|
|
|
|
|
|
|
| | 完美二叉树 | 链表 |
|
|
|
|
|
| ----------------------------- | ---------- | ---------- |
|
|
|
|
|
| 二叉树第 $i$ 层的结点数量 | $2^{i-1}$ | $1$ |
|
|
|
|
|
| 高度为 $h$ 的二叉树的结点总数 | $2^h - 1$ | $h$ |
|
|
|
|
|
| 结点总数为 $n$ 的二叉树的高度 | $\log_2 n + 1$ | $n$ |
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
## 二叉树基本操作
|
|
|
|
|
|
|
|
|
|
**初始化二叉树。** 与链表类似,先初始化结点,再构建引用指向(即指针)。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="binary_tree.java"
|
|
|
|
|
// 初始化结点
|
|
|
|
|
TreeNode n1 = new TreeNode(1);
|
|
|
|
|
TreeNode n2 = new TreeNode(2);
|
|
|
|
|
TreeNode n3 = new TreeNode(3);
|
|
|
|
|
TreeNode n4 = new TreeNode(4);
|
|
|
|
|
TreeNode n5 = new TreeNode(5);
|
|
|
|
|
// 构建引用指向(即指针)
|
|
|
|
|
n1.left = n2;
|
|
|
|
|
n1.right = n3;
|
|
|
|
|
n2.left = n4;
|
|
|
|
|
n2.right = n5;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
**插入与删除结点。** 与链表类似,插入与删除结点都可以通过修改指针实现。
|
|
|
|
|
|
|
|
|
|
![binary_tree_add_remove](binary_tree.assets/binary_tree_add_remove.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 在二叉树中插入与删除结点 </p>
|
|
|
|
|
|
|
|
|
|
```java title="binary_tree.java"
|
|
|
|
|
TreeNode P = new TreeNode(0);
|
|
|
|
|
// 在 n1 -> n2 中间插入结点 P
|
|
|
|
|
n1.left = P;
|
|
|
|
|
P.left = n2;
|
|
|
|
|
// 删除结点 P
|
|
|
|
|
n1.left = n2;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
!!! note
|
|
|
|
|
|
|
|
|
|
插入结点会改变二叉树的原有逻辑结构,删除结点往往意味着删除了该结点的所有子树。因此,二叉树中的插入与删除一般都是由一套操作配合完成的,这样才能实现有意义的操作。
|
|
|
|
|
|
|
|
|
|
## 二叉树遍历
|
|
|
|
|
|
|
|
|
|
非线性数据结构的遍历操作比线性数据结构更加复杂,往往需要使用搜索算法来实现。常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
|
|
|
|
|
|
|
|
|
|
### 层序遍历
|
|
|
|
|
|
|
|
|
|
「层序遍历 Hierarchical-Order Traversal」从顶至底、一层一层地遍历二叉树,并在每层中按照从左到右的顺序访问结点。
|
|
|
|
|
|
|
|
|
|
层序遍历本质上是「广度优先搜索 Breadth-First Traversal」,其体现着一种 “一圈一圈向外” 的层进遍历方式。
|
|
|
|
|
|
|
|
|
|
![binary_tree_bfs](binary_tree.assets/binary_tree_bfs.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 二叉树的层序遍历 </p>
|
|
|
|
|
|
|
|
|
|
广度优先遍历一般借助「队列」来实现。队列的规则是 “先进先出” ,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="binary_tree_bfs.java"
|
|
|
|
|
/* 层序遍历 */
|
|
|
|
|
List<Integer> hierOrder(TreeNode root) {
|
|
|
|
|
// 初始化队列,加入根结点
|
|
|
|
|
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
|
|
|
|
|
// 初始化一个列表,用于保存遍历序列
|
|
|
|
|
List<Integer> list = new ArrayList<>();
|
|
|
|
|
while (!queue.isEmpty()) {
|
|
|
|
|
TreeNode node = queue.poll(); // 队列出队
|
|
|
|
|
list.add(node.val); // 保存结点值
|
|
|
|
|
if (node.left != null)
|
|
|
|
|
queue.offer(node.left); // 左子结点入队
|
|
|
|
|
if (node.right != null)
|
|
|
|
|
queue.offer(node.right); // 右子结点入队
|
|
|
|
|
}
|
|
|
|
|
return list;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 前序、中序、后序遍历
|
|
|
|
|
|
|
|
|
|
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种 “先走到尽头,再回头继续” 的回溯遍历方式。
|
|
|
|
|
|
|
|
|
|
如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围 “走” 一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。
|
|
|
|
|
|
|
|
|
|
![binary_tree_dfs](binary_tree.assets/binary_tree_dfs.png)
|
|
|
|
|
|
|
|
|
|
<p align="center"> Fig. 二叉树的前 / 中 / 后序遍历 </p>
|
|
|
|
|
|
|
|
|
|
<div class="center-table" markdown>
|
|
|
|
|
|
|
|
|
|
| 位置 | 含义 | 此处访问结点时对应 |
|
|
|
|
|
| ---------- | ------------------------------------ | ----------------------------- |
|
|
|
|
|
| 橙色圆圈处 | 刚进入此结点,即将访问该结点的左子树 | 前序遍历 Pre-Order Traversal |
|
|
|
|
|
| 蓝色圆圈处 | 已访问完左子树,即将访问右子树 | 中序遍历 In-Order Traversal |
|
|
|
|
|
| 紫色圆圈处 | 已访问完左子树和右子树,即将返回 | 后序遍历 Post-Order Traversal |
|
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="binary_tree_dfs.java"
|
|
|
|
|
/* 前序遍历 */
|
|
|
|
|
void preOrder(TreeNode root) {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:根结点 -> 左子树 -> 右子树
|
|
|
|
|
list.add(root.val);
|
|
|
|
|
preOrder(root.left);
|
|
|
|
|
preOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 中序遍历 */
|
|
|
|
|
void inOrder(TreeNode root) {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 根结点 -> 右子树
|
|
|
|
|
inOrder(root.left);
|
|
|
|
|
list.add(root.val);
|
|
|
|
|
inOrder(root.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 后序遍历 */
|
|
|
|
|
void postOrder(TreeNode root) {
|
|
|
|
|
if (root == null) return;
|
|
|
|
|
// 访问优先级:左子树 -> 右子树 -> 根结点
|
|
|
|
|
postOrder(root.left);
|
|
|
|
|
postOrder(root.right);
|
|
|
|
|
list.add(root.val);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
!!! note
|
|
|
|
|
|
|
|
|
|
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。
|