|
|
|
|
# 归并排序
|
|
|
|
|
|
|
|
|
|
「归并排序 Merge Sort」是算法中“分治思想”的典型体现,其有「划分」和「合并」两个阶段:
|
|
|
|
|
|
|
|
|
|
1. **划分阶段**:通过递归不断 **将数组从中点位置划分开**,将长数组的排序问题转化为短数组的排序问题;
|
|
|
|
|
2. **合并阶段**:划分到子数组长度为 1 时,开始向上合并,不断将 **左、右两个短排序数组** 合并为 **一个长排序数组**,直至合并至原数组时完成排序;
|
|
|
|
|
|
|
|
|
|
![归并排序的划分与合并阶段](merge_sort.assets/merge_sort_overview.png)
|
|
|
|
|
|
|
|
|
|
## 算法流程
|
|
|
|
|
|
|
|
|
|
**「递归划分」** 从顶至底递归地 **将数组从中点切为两个子数组**,直至长度为 1 ;
|
|
|
|
|
|
|
|
|
|
1. 计算数组中点 `mid` ,递归划分左子数组(区间 `[left, mid]` )和右子数组(区间 `[mid + 1, right]` );
|
|
|
|
|
2. 递归执行 `1.` 步骤,直至子数组区间长度为 1 时,终止递归划分;
|
|
|
|
|
|
|
|
|
|
**「回溯合并」** 从底至顶地将左子数组和右子数组合并为一个 **有序数组** ;
|
|
|
|
|
|
|
|
|
|
需要注意,由于从长度为 1 的子数组开始合并,所以 **每个子数组都是有序的**。因此,合并任务本质是要 **将两个有序子数组合并为一个有序数组**。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![归并排序步骤](merge_sort.assets/merge_sort_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![merge_sort_step2](merge_sort.assets/merge_sort_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![merge_sort_step3](merge_sort.assets/merge_sort_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![merge_sort_step4](merge_sort.assets/merge_sort_step4.png)
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![merge_sort_step5](merge_sort.assets/merge_sort_step5.png)
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![merge_sort_step6](merge_sort.assets/merge_sort_step6.png)
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![merge_sort_step7](merge_sort.assets/merge_sort_step7.png)
|
|
|
|
|
|
|
|
|
|
=== "<8>"
|
|
|
|
|
![merge_sort_step8](merge_sort.assets/merge_sort_step8.png)
|
|
|
|
|
|
|
|
|
|
=== "<9>"
|
|
|
|
|
![merge_sort_step9](merge_sort.assets/merge_sort_step9.png)
|
|
|
|
|
|
|
|
|
|
=== "<10>"
|
|
|
|
|
![merge_sort_step10](merge_sort.assets/merge_sort_step10.png)
|
|
|
|
|
|
|
|
|
|
观察发现,归并排序的递归顺序就是二叉树的「后序遍历」。
|
|
|
|
|
|
|
|
|
|
- **后序遍历**:先递归左子树、再递归右子树、最后处理根结点。
|
|
|
|
|
- **归并排序**:先递归左子树、再递归右子树、最后处理合并。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="merge_sort.java"
|
|
|
|
|
[class]{merge_sort}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{merge_sort}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="merge_sort.cpp"
|
|
|
|
|
[class]{}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="merge_sort.py"
|
|
|
|
|
[class]{}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{merge_sort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="merge_sort.go"
|
|
|
|
|
[class]{}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
|
|
|
|
```javascript title="merge_sort.js"
|
|
|
|
|
[class]{}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
|
|
|
|
```typescript title="merge_sort.ts"
|
|
|
|
|
[class]{}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="merge_sort.c"
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="merge_sort.cs"
|
|
|
|
|
[class]{merge_sort}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{merge_sort}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="merge_sort.swift"
|
|
|
|
|
[class]{}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="merge_sort.zig"
|
|
|
|
|
[class]{}-[func]{merge}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{mergeSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
下面重点解释一下合并方法 `merge()` 的流程:
|
|
|
|
|
|
|
|
|
|
1. 初始化一个辅助数组 `tmp` 暂存待合并区间 `[left, right]` 内的元素,后续通过覆盖原数组 `nums` 的元素来实现合并;
|
|
|
|
|
2. 初始化指针 `i` , `j` , `k` 分别指向左子数组、右子数组、原数组的首元素;
|
|
|
|
|
3. 循环判断 `tmp[i]` 和 `tmp[j]` 的大小,将较小的先覆盖至 `nums[k]` ,指针 `i` , `j` 根据判断结果交替前进(指针 `k` 也前进),直至两个子数组都遍历完,即可完成合并。
|
|
|
|
|
|
|
|
|
|
合并方法 `merge()` 代码中的主要难点:
|
|
|
|
|
|
|
|
|
|
- `nums` 的待合并区间为 `[left, right]` ,而因为 `tmp` 只复制了 `nums` 该区间元素,所以 `tmp` 对应区间为 `[0, right - left]` ,**需要特别注意代码中各个变量的含义**。
|
|
|
|
|
- 判断 `tmp[i]` 和 `tmp[j]` 的大小的操作中,还 **需考虑当子数组遍历完成后的索引越界问题**,即 `i > leftEnd` 和 `j > rightEnd` 的情况,索引越界的优先级是最高的,例如如果左子数组已经被合并完了,那么不用继续判断,直接合并右子数组元素即可。
|
|
|
|
|
|
|
|
|
|
## 算法特性
|
|
|
|
|
|
|
|
|
|
- **时间复杂度 $O(n \log n)$** :划分形成高度为 $\log n$ 的递归树,每层合并的总操作数量为 $n$ ,总体使用 $O(n \log n)$ 时间。
|
|
|
|
|
- **空间复杂度 $O(n)$** :需借助辅助数组实现合并,使用 $O(n)$ 大小的额外空间;递归深度为 $\log n$ ,使用 $O(\log n)$ 大小的栈帧空间。
|
|
|
|
|
- **非原地排序**:辅助数组需要使用 $O(n)$ 额外空间。
|
|
|
|
|
- **稳定排序**:在合并时可保证相等元素的相对位置不变。
|
|
|
|
|
- **非自适应排序**:对于任意输入数据,归并排序的时间复杂度皆相同。
|
|
|
|
|
|
|
|
|
|
## 链表排序 *
|
|
|
|
|
|
|
|
|
|
归并排序有一个很特别的优势,用于排序链表时有很好的性能表现,**空间复杂度可被优化至 $O(1)$** ,这是因为:
|
|
|
|
|
|
|
|
|
|
- 由于链表可仅通过改变指针来实现结点增删,因此“将两个短有序链表合并为一个长有序链表”无需使用额外空间,即回溯合并阶段不用像排序数组一样建立辅助数组 `tmp` ;
|
|
|
|
|
- 通过使用「迭代」代替「递归划分」,可省去递归使用的栈帧空间;
|
|
|
|
|
|
|
|
|
|
> 详情参考:[148. 排序链表](https://leetcode-cn.com/problems/sort-list/solution/sort-list-gui-bing-pai-xu-lian-biao-by-jyd/)
|