You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/chapter_tree/binary_tree_traversal.md

594 lines
18 KiB

2 years ago
---
comments: true
---
2 years ago
# 7.2.   二叉树遍历
2 years ago
2 years ago
从物理结构角度看,树是一种基于链表的数据结构,因此遍历方式也是通过指针(即引用)逐个遍历结点。同时,树还是一种非线性数据结构,这导致遍历树比遍历链表更加复杂,需要使用搜索算法来实现。
常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
2 years ago
2 years ago
## 7.2.1.   层序遍历
2 years ago
2 years ago
「层序遍历 Level-Order Traversal」从顶至底、一层一层地遍历二叉树并在每层中按照从左到右的顺序访问结点。
2 years ago
层序遍历本质上是「广度优先搜索 Breadth-First Traversal」其体现着一种“一圈一圈向外”的层进遍历方式。
2 years ago
![二叉树的层序遍历](binary_tree_traversal.assets/binary_tree_bfs.png)
2 years ago
2 years ago
<p align="center"> Fig. 二叉树的层序遍历 </p>
2 years ago
### 算法实现
2 years ago
广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是“一层层平推”,两者背后的思想是一致的。
2 years ago
=== "Java"
```java title="binary_tree_bfs.java"
/* 层序遍历 */
2 years ago
List<Integer> levelOrder(TreeNode root) {
2 years ago
// 初始化队列,加入根结点
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
// 初始化一个列表,用于保存遍历序列
List<Integer> list = new ArrayList<>();
while (!queue.isEmpty()) {
TreeNode node = queue.poll(); // 队列出队
list.add(node.val); // 保存结点值
if (node.left != null)
queue.offer(node.left); // 左子结点入队
if (node.right != null)
queue.offer(node.right); // 右子结点入队
}
return list;
}
```
=== "C++"
```cpp title="binary_tree_bfs.cpp"
/* 层序遍历 */
2 years ago
vector<int> levelOrder(TreeNode* root) {
2 years ago
// 初始化队列,加入根结点
queue<TreeNode*> queue;
queue.push(root);
// 初始化一个列表,用于保存遍历序列
vector<int> vec;
while (!queue.empty()) {
TreeNode* node = queue.front();
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存结点值
if (node->left != nullptr)
queue.push(node->left); // 左子结点入队
if (node->right != nullptr)
queue.push(node->right); // 右子结点入队
}
return vec;
}
```
=== "Python"
```python title="binary_tree_bfs.py"
2 years ago
def level_order(root: TreeNode | None) -> list[int]:
2 years ago
""" 层序遍历 """
2 years ago
# 初始化队列,加入根结点
2 years ago
queue: deque[TreeNode] = deque()
2 years ago
queue.append(root)
# 初始化一个列表,用于保存遍历序列
2 years ago
res: list[int] = []
2 years ago
while queue:
2 years ago
node: TreeNode = queue.popleft() # 队列出队
res.append(node.val) # 保存结点值
2 years ago
if node.left is not None:
2 years ago
queue.append(node.left) # 左子结点入队
2 years ago
if node.right is not None:
2 years ago
queue.append(node.right) # 右子结点入队
2 years ago
return res
```
=== "Go"
```go title="binary_tree_bfs.go"
/* 层序遍历 */
2 years ago
func levelOrder(root *TreeNode) []int {
2 years ago
// 初始化队列,加入根结点
queue := list.New()
queue.PushBack(root)
// 初始化一个切片,用于保存遍历序列
nums := make([]int, 0)
for queue.Len() > 0 {
2 years ago
// 队列出队
2 years ago
node := queue.Remove(queue.Front()).(*TreeNode)
// 保存结点值
nums = append(nums, node.Val)
if node.Left != nil {
// 左子结点入队
queue.PushBack(node.Left)
}
if node.Right != nil {
// 右子结点入队
queue.PushBack(node.Right)
}
}
return nums
}
```
=== "JavaScript"
```javascript title="binary_tree_bfs.js"
/* 层序遍历 */
2 years ago
function levelOrder(root) {
2 years ago
// 初始化队列,加入根结点
2 years ago
const queue = [root];
2 years ago
// 初始化一个列表,用于保存遍历序列
2 years ago
const list = [];
2 years ago
while (queue.length) {
2 years ago
let node = queue.shift(); // 队列出队
list.push(node.val); // 保存结点值
2 years ago
if (node.left)
2 years ago
queue.push(node.left); // 左子结点入队
2 years ago
if (node.right)
2 years ago
queue.push(node.right); // 右子结点入队
2 years ago
}
return list;
}
```
=== "TypeScript"
```typescript title="binary_tree_bfs.ts"
/* 层序遍历 */
2 years ago
function levelOrder(root: TreeNode | null): number[] {
2 years ago
// 初始化队列,加入根结点
const queue = [root];
// 初始化一个列表,用于保存遍历序列
const list: number[] = [];
while (queue.length) {
let node = queue.shift() as TreeNode; // 队列出队
list.push(node.val); // 保存结点值
if (node.left) {
queue.push(node.left); // 左子结点入队
}
if (node.right) {
queue.push(node.right); // 右子结点入队
}
}
return list;
}
```
=== "C"
```c title="binary_tree_bfs.c"
2 years ago
[class]{}-[func]{levelOrder}
2 years ago
```
=== "C#"
```csharp title="binary_tree_bfs.cs"
/* 层序遍历 */
2 years ago
List<int> levelOrder(TreeNode root)
2 years ago
{
// 初始化队列,加入根结点
Queue<TreeNode> queue = new();
queue.Enqueue(root);
// 初始化一个列表,用于保存遍历序列
List<int> list = new();
while (queue.Count != 0)
{
TreeNode node = queue.Dequeue(); // 队列出队
list.Add(node.val); // 保存结点值
if (node.left != null)
queue.Enqueue(node.left); // 左子结点入队
if (node.right != null)
queue.Enqueue(node.right); // 右子结点入队
}
return list;
}
```
=== "Swift"
```swift title="binary_tree_bfs.swift"
/* 层序遍历 */
2 years ago
func levelOrder(root: TreeNode) -> [Int] {
2 years ago
// 初始化队列,加入根结点
var queue: [TreeNode] = [root]
// 初始化一个列表,用于保存遍历序列
var list: [Int] = []
while !queue.isEmpty {
let node = queue.removeFirst() // 队列出队
list.append(node.val) // 保存结点值
if let left = node.left {
queue.append(left) // 左子结点入队
}
if let right = node.right {
queue.append(right) // 右子结点入队
}
}
return list
}
```
=== "Zig"
```zig title="binary_tree_bfs.zig"
2 years ago
// 层序遍历
2 years ago
fn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {
2 years ago
// 初始化队列,加入根结点
const L = std.TailQueue(*inc.TreeNode(T));
var queue = L{};
var root_node = try mem_allocator.create(L.Node);
root_node.data = root;
queue.append(root_node);
// 初始化一个列表,用于保存遍历序列
var list = std.ArrayList(T).init(std.heap.page_allocator);
while (queue.len > 0) {
var queue_node = queue.popFirst().?; // 队列出队
var node = queue_node.data;
try list.append(node.val); // 保存结点值
if (node.left != null) {
var tmp_node = try mem_allocator.create(L.Node);
tmp_node.data = node.left.?;
queue.append(tmp_node); // 左子结点入队
}
if (node.right != null) {
var tmp_node = try mem_allocator.create(L.Node);
tmp_node.data = node.right.?;
queue.append(tmp_node); // 右子结点入队
}
}
return list;
}
2 years ago
```
2 years ago
### 复杂度分析
**时间复杂度**:所有结点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为结点数量。
**空间复杂度**:当为满二叉树时达到最差情况,遍历到最底层前,队列中最多同时存在 $\frac{n + 1}{2}$ 个结点,使用 $O(n)$ 空间。
2 years ago
## 7.2.2. &nbsp; 前序、中序、后序遍历
2 years ago
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」其体现着一种“先走到尽头再回头继续”的回溯遍历方式。
如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。
2 years ago
![二叉搜索树的前、中、后序遍历](binary_tree_traversal.assets/binary_tree_dfs.png)
2 years ago
2 years ago
<p align="center"> Fig. 二叉搜索树的前、中、后序遍历 </p>
2 years ago
<div class="center-table" markdown>
| 位置 | 含义 | 此处访问结点时对应 |
| ---------- | ------------------------------------ | ----------------------------- |
| 橙色圆圈处 | 刚进入此结点,即将访问该结点的左子树 | 前序遍历 Pre-Order Traversal |
| 蓝色圆圈处 | 已访问完左子树,即将访问右子树 | 中序遍历 In-Order Traversal |
| 紫色圆圈处 | 已访问完左子树和右子树,即将返回 | 后序遍历 Post-Order Traversal |
</div>
2 years ago
### 算法实现
2 years ago
=== "Java"
```java title="binary_tree_dfs.java"
/* 前序遍历 */
void preOrder(TreeNode root) {
if (root == null) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
list.add(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* 中序遍历 */
void inOrder(TreeNode root) {
if (root == null) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root.left);
list.add(root.val);
inOrder(root.right);
}
/* 后序遍历 */
void postOrder(TreeNode root) {
if (root == null) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root.left);
postOrder(root.right);
list.add(root.val);
}
```
=== "C++"
```cpp title="binary_tree_dfs.cpp"
/* 前序遍历 */
void preOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);
}
/* 中序遍历 */
void inOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);
}
/* 后序遍历 */
void postOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);
}
```
=== "Python"
```python title="binary_tree_dfs.py"
2 years ago
def pre_order(root: TreeNode | None) -> None:
2 years ago
""" 前序遍历 """
2 years ago
if root is None:
return
# 访问优先级:根结点 -> 左子树 -> 右子树
res.append(root.val)
pre_order(root=root.left)
pre_order(root=root.right)
2 years ago
def in_order(root: TreeNode | None) -> None:
2 years ago
""" 中序遍历 """
2 years ago
if root is None:
return
# 访问优先级:左子树 -> 根结点 -> 右子树
in_order(root=root.left)
res.append(root.val)
in_order(root=root.right)
2 years ago
def post_order(root: TreeNode | None) -> None:
2 years ago
""" 后序遍历 """
2 years ago
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根结点
post_order(root=root.left)
post_order(root=root.right)
res.append(root.val)
```
=== "Go"
```go title="binary_tree_dfs.go"
/* 前序遍历 */
func preOrder(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:根结点 -> 左子树 -> 右子树
nums = append(nums, node.Val)
preOrder(node.Left)
preOrder(node.Right)
}
2 years ago
2 years ago
/* 中序遍历 */
func inOrder(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(node.Left)
nums = append(nums, node.Val)
inOrder(node.Right)
}
2 years ago
2 years ago
/* 后序遍历 */
func postOrder(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(node.Left)
postOrder(node.Right)
nums = append(nums, node.Val)
}
```
=== "JavaScript"
```javascript title="binary_tree_dfs.js"
/* 前序遍历 */
2 years ago
function preOrder(root) {
2 years ago
if (root === null) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
list.push(root.val);
preOrder(root.left);
preOrder(root.right);
}
2 years ago
2 years ago
/* 中序遍历 */
function inOrder(root) {
if (root === null) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root.left);
list.push(root.val);
inOrder(root.right);
}
2 years ago
2 years ago
/* 后序遍历 */
function postOrder(root) {
if (root === null) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root.left);
postOrder(root.right);
list.push(root.val);
}
```
=== "TypeScript"
```typescript title="binary_tree_dfs.ts"
/* 前序遍历 */
function preOrder(root: TreeNode | null): void {
if (root === null) {
return;
}
// 访问优先级:根结点 -> 左子树 -> 右子树
list.push(root.val);
preOrder(root.left);
preOrder(root.right);
}
2 years ago
2 years ago
/* 中序遍历 */
function inOrder(root: TreeNode | null): void {
if (root === null) {
return;
}
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root.left);
list.push(root.val);
inOrder(root.right);
}
2 years ago
2 years ago
/* 后序遍历 */
function postOrder(root: TreeNode | null): void {
if (root === null) {
return;
}
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root.left);
postOrder(root.right);
list.push(root.val);
}
```
=== "C"
```c title="binary_tree_dfs.c"
2 years ago
[class]{}-[func]{preOrder}
[class]{}-[func]{inOrder}
[class]{}-[func]{postOrder}
2 years ago
```
=== "C#"
```csharp title="binary_tree_dfs.cs"
/* 前序遍历 */
void preOrder(TreeNode? root)
{
if (root == null) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
list.Add(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* 中序遍历 */
void inOrder(TreeNode? root)
{
if (root == null) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root.left);
list.Add(root.val);
inOrder(root.right);
}
/* 后序遍历 */
void postOrder(TreeNode? root)
{
if (root == null) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root.left);
postOrder(root.right);
list.Add(root.val);
}
```
=== "Swift"
```swift title="binary_tree_dfs.swift"
/* 前序遍历 */
func preOrder(root: TreeNode?) {
guard let root = root else {
return
}
// 访问优先级:根结点 -> 左子树 -> 右子树
list.append(root.val)
preOrder(root: root.left)
preOrder(root: root.right)
}
/* 中序遍历 */
func inOrder(root: TreeNode?) {
guard let root = root else {
return
}
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root: root.left)
list.append(root.val)
inOrder(root: root.right)
}
/* 后序遍历 */
func postOrder(root: TreeNode?) {
guard let root = root else {
return
}
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root: root.left)
postOrder(root: root.right)
list.append(root.val)
}
```
=== "Zig"
```zig title="binary_tree_dfs.zig"
2 years ago
// 前序遍历
fn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
if (root == null) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
try list.append(root.?.val);
try preOrder(T, root.?.left);
try preOrder(T, root.?.right);
}
// 中序遍历
fn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
if (root == null) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
try inOrder(T, root.?.left);
try list.append(root.?.val);
try inOrder(T, root.?.right);
}
2 years ago
2 years ago
// 后序遍历
fn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {
if (root == null) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
try postOrder(T, root.?.left);
try postOrder(T, root.?.right);
try list.append(root.?.val);
}
2 years ago
```
!!! note
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。
2 years ago
### 复杂度分析
**时间复杂度**:所有结点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为结点数量。
**空间复杂度**:当树退化为链表时达到最差情况,递归深度达到 $n$ ,系统使用 $O(n)$ 栈帧空间。