|
|
|
|
# 归并排序
|
|
|
|
|
|
|
|
|
|
「归并排序 merge sort」是一种基于分治策略的排序算法,包含下图所示的“划分”和“合并”阶段。
|
|
|
|
|
|
|
|
|
|
1. **划分阶段**:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
|
|
|
|
|
2. **合并阶段**:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。
|
|
|
|
|
|
|
|
|
|
![归并排序的划分与合并阶段](merge_sort.assets/merge_sort_overview.png)
|
|
|
|
|
|
|
|
|
|
## 算法流程
|
|
|
|
|
|
|
|
|
|
如下图所示,“划分阶段”从顶至底递归地将数组从中点切分为两个子数组。
|
|
|
|
|
|
|
|
|
|
1. 计算数组中点 `mid` ,递归划分左子数组(区间 `[left, mid]` )和右子数组(区间 `[mid + 1, right]` )。
|
|
|
|
|
2. 递归执行步骤 `1.` ,直至子数组区间长度为 1 时,终止递归划分。
|
|
|
|
|
|
|
|
|
|
“合并阶段”从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![归并排序步骤](merge_sort.assets/merge_sort_step1.png)
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![merge_sort_step2](merge_sort.assets/merge_sort_step2.png)
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![merge_sort_step3](merge_sort.assets/merge_sort_step3.png)
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![merge_sort_step4](merge_sort.assets/merge_sort_step4.png)
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![merge_sort_step5](merge_sort.assets/merge_sort_step5.png)
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![merge_sort_step6](merge_sort.assets/merge_sort_step6.png)
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![merge_sort_step7](merge_sort.assets/merge_sort_step7.png)
|
|
|
|
|
|
|
|
|
|
=== "<8>"
|
|
|
|
|
![merge_sort_step8](merge_sort.assets/merge_sort_step8.png)
|
|
|
|
|
|
|
|
|
|
=== "<9>"
|
|
|
|
|
![merge_sort_step9](merge_sort.assets/merge_sort_step9.png)
|
|
|
|
|
|
|
|
|
|
=== "<10>"
|
|
|
|
|
![merge_sort_step10](merge_sort.assets/merge_sort_step10.png)
|
|
|
|
|
|
|
|
|
|
观察发现,归并排序与二叉树后序遍历的递归顺序是一致的。
|
|
|
|
|
|
|
|
|
|
- **后序遍历**:先递归左子树,再递归右子树,最后处理根节点。
|
|
|
|
|
- **归并排序**:先递归左子数组,再递归右子数组,最后处理合并。
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{merge_sort}-[class]{}-[func]{merge_sort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
值得注意的是,`nums` 的待合并区间为 `[left, right]` ,而 `tmp` 的对应区间为 `[0, right - left]` 。
|
|
|
|
|
|
|
|
|
|
## 算法特性
|
|
|
|
|
|
|
|
|
|
- **时间复杂度 $O(n \log n)$、非自适应排序**:划分产生高度为 $\log n$ 的递归树,每层合并的总操作数量为 $n$ ,因此总体时间复杂度为 $O(n \log n)$ 。
|
|
|
|
|
- **空间复杂度 $O(n)$、非原地排序**:递归深度为 $\log n$ ,使用 $O(\log n)$ 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 $O(n)$ 大小的额外空间。
|
|
|
|
|
- **稳定排序**:在合并过程中,相等元素的次序保持不变。
|
|
|
|
|
|
|
|
|
|
## 链表排序 *
|
|
|
|
|
|
|
|
|
|
对于链表,归并排序相较于其他排序算法具有显著优势,**可以将链表排序任务的空间复杂度优化至 $O(1)$** 。
|
|
|
|
|
|
|
|
|
|
- **划分阶段**:可以通过使用“迭代”替代“递归”来实现链表划分工作,从而省去递归使用的栈帧空间。
|
|
|
|
|
- **合并阶段**:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。
|
|
|
|
|
|
|
|
|
|
具体实现细节比较复杂,有兴趣的同学可以查阅相关资料进行学习。
|