|
|
|
|
---
|
|
|
|
|
comments: true
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# 11.7 堆排序
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
|
|
|
|
阅读本节前,请确保已学完“堆“章节。
|
|
|
|
|
|
|
|
|
|
「堆排序 heap sort」是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序。
|
|
|
|
|
|
|
|
|
|
1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
|
|
|
|
|
2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。
|
|
|
|
|
|
|
|
|
|
以上方法虽然可行,但需要借助一个额外数组来保存弹出的元素,比较浪费空间。在实际中,我们通常使用一种更加优雅的实现方式。
|
|
|
|
|
|
|
|
|
|
## 11.7.1 算法流程
|
|
|
|
|
|
|
|
|
|
设数组的长度为 $n$ ,堆排序的流程如图 11-12 所示。
|
|
|
|
|
|
|
|
|
|
1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
|
|
|
|
|
2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 $1$ ,已排序元素数量加 $1$ 。
|
|
|
|
|
3. 从堆顶元素开始,从顶到底执行堆化操作(Sift Down)。完成堆化后,堆的性质得到修复。
|
|
|
|
|
4. 循环执行第 `2.` 和 `3.` 步。循环 $n - 1$ 轮后,即可完成数组排序。
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
|
|
|
|
实际上,元素出堆操作中也包含第 `2.` 和 `3.` 步,只是多了一个弹出元素的步骤。
|
|
|
|
|
|
|
|
|
|
=== "<1>"
|
|
|
|
|
![堆排序步骤](heap_sort.assets/heap_sort_step1.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<2>"
|
|
|
|
|
![heap_sort_step2](heap_sort.assets/heap_sort_step2.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<3>"
|
|
|
|
|
![heap_sort_step3](heap_sort.assets/heap_sort_step3.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<4>"
|
|
|
|
|
![heap_sort_step4](heap_sort.assets/heap_sort_step4.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<5>"
|
|
|
|
|
![heap_sort_step5](heap_sort.assets/heap_sort_step5.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<6>"
|
|
|
|
|
![heap_sort_step6](heap_sort.assets/heap_sort_step6.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<7>"
|
|
|
|
|
![heap_sort_step7](heap_sort.assets/heap_sort_step7.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<8>"
|
|
|
|
|
![heap_sort_step8](heap_sort.assets/heap_sort_step8.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<9>"
|
|
|
|
|
![heap_sort_step9](heap_sort.assets/heap_sort_step9.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<10>"
|
|
|
|
|
![heap_sort_step10](heap_sort.assets/heap_sort_step10.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<11>"
|
|
|
|
|
![heap_sort_step11](heap_sort.assets/heap_sort_step11.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
=== "<12>"
|
|
|
|
|
![heap_sort_step12](heap_sort.assets/heap_sort_step12.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 图 11-12 堆排序步骤 </p>
|
|
|
|
|
|
|
|
|
|
在代码实现中,我们使用了与堆章节相同的从顶至底堆化 `sift_down()` 函数。值得注意的是,由于堆的长度会随着提取最大元素而减小,因此我们需要给 `sift_down()` 函数添加一个长度参数 $n$ ,用于指定堆的当前有效长度。
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="heap_sort.py"
|
|
|
|
|
def sift_down(nums: list[int], n: int, i: int):
|
|
|
|
|
"""堆的长度为 n ,从节点 i 开始,从顶至底堆化"""
|
|
|
|
|
while True:
|
|
|
|
|
# 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
l = 2 * i + 1
|
|
|
|
|
r = 2 * i + 2
|
|
|
|
|
ma = i
|
|
|
|
|
if l < n and nums[l] > nums[ma]:
|
|
|
|
|
ma = l
|
|
|
|
|
if r < n and nums[r] > nums[ma]:
|
|
|
|
|
ma = r
|
|
|
|
|
# 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if ma == i:
|
|
|
|
|
break
|
|
|
|
|
# 交换两节点
|
|
|
|
|
nums[i], nums[ma] = nums[ma], nums[i]
|
|
|
|
|
# 循环向下堆化
|
|
|
|
|
i = ma
|
|
|
|
|
|
|
|
|
|
def heap_sort(nums: list[int]):
|
|
|
|
|
"""堆排序"""
|
|
|
|
|
# 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for i in range(len(nums) // 2 - 1, -1, -1):
|
|
|
|
|
sift_down(nums, len(nums), i)
|
|
|
|
|
# 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for i in range(len(nums) - 1, 0, -1):
|
|
|
|
|
# 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
nums[0], nums[i] = nums[i], nums[0]
|
|
|
|
|
# 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
sift_down(nums, i, 0)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="heap_sort.cpp"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
void siftDown(vector<int> &nums, int n, int i) {
|
|
|
|
|
while (true) {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
int l = 2 * i + 1;
|
|
|
|
|
int r = 2 * i + 2;
|
|
|
|
|
int ma = i;
|
|
|
|
|
if (l < n && nums[l] > nums[ma])
|
|
|
|
|
ma = l;
|
|
|
|
|
if (r < n && nums[r] > nums[ma])
|
|
|
|
|
ma = r;
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if (ma == i) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// 交换两节点
|
|
|
|
|
swap(nums[i], nums[ma]);
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
void heapSort(vector<int> &nums) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for (int i = nums.size() / 2 - 1; i >= 0; --i) {
|
|
|
|
|
siftDown(nums, nums.size(), i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for (int i = nums.size() - 1; i > 0; --i) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
swap(nums[0], nums[i]);
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="heap_sort.java"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
void siftDown(int[] nums, int n, int i) {
|
|
|
|
|
while (true) {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
int l = 2 * i + 1;
|
|
|
|
|
int r = 2 * i + 2;
|
|
|
|
|
int ma = i;
|
|
|
|
|
if (l < n && nums[l] > nums[ma])
|
|
|
|
|
ma = l;
|
|
|
|
|
if (r < n && nums[r] > nums[ma])
|
|
|
|
|
ma = r;
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if (ma == i)
|
|
|
|
|
break;
|
|
|
|
|
// 交换两节点
|
|
|
|
|
int temp = nums[i];
|
|
|
|
|
nums[i] = nums[ma];
|
|
|
|
|
nums[ma] = temp;
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
void heapSort(int[] nums) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for (int i = nums.length / 2 - 1; i >= 0; i--) {
|
|
|
|
|
siftDown(nums, nums.length, i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for (int i = nums.length - 1; i > 0; i--) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
int tmp = nums[0];
|
|
|
|
|
nums[0] = nums[i];
|
|
|
|
|
nums[i] = tmp;
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="heap_sort.cs"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
void SiftDown(int[] nums, int n, int i) {
|
|
|
|
|
while (true) {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
int l = 2 * i + 1;
|
|
|
|
|
int r = 2 * i + 2;
|
|
|
|
|
int ma = i;
|
|
|
|
|
if (l < n && nums[l] > nums[ma])
|
|
|
|
|
ma = l;
|
|
|
|
|
if (r < n && nums[r] > nums[ma])
|
|
|
|
|
ma = r;
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if (ma == i)
|
|
|
|
|
break;
|
|
|
|
|
// 交换两节点
|
|
|
|
|
(nums[ma], nums[i]) = (nums[i], nums[ma]);
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
void HeapSort(int[] nums) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for (int i = nums.Length / 2 - 1; i >= 0; i--) {
|
|
|
|
|
SiftDown(nums, nums.Length, i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for (int i = nums.Length - 1; i > 0; i--) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
(nums[i], nums[0]) = (nums[0], nums[i]);
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
SiftDown(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="heap_sort.go"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
func siftDown(nums *[]int, n, i int) {
|
|
|
|
|
for true {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
l := 2*i + 1
|
|
|
|
|
r := 2*i + 2
|
|
|
|
|
ma := i
|
|
|
|
|
if l < n && (*nums)[l] > (*nums)[ma] {
|
|
|
|
|
ma = l
|
|
|
|
|
}
|
|
|
|
|
if r < n && (*nums)[r] > (*nums)[ma] {
|
|
|
|
|
ma = r
|
|
|
|
|
}
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if ma == i {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
// 交换两节点
|
|
|
|
|
(*nums)[i], (*nums)[ma] = (*nums)[ma], (*nums)[i]
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
func heapSort(nums *[]int) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for i := len(*nums)/2 - 1; i >= 0; i-- {
|
|
|
|
|
siftDown(nums, len(*nums), i)
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for i := len(*nums) - 1; i > 0; i-- {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
(*nums)[0], (*nums)[i] = (*nums)[i], (*nums)[0]
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums, i, 0)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="heap_sort.swift"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
func siftDown(nums: inout [Int], n: Int, i: Int) {
|
|
|
|
|
var i = i
|
|
|
|
|
while true {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
let l = 2 * i + 1
|
|
|
|
|
let r = 2 * i + 2
|
|
|
|
|
var ma = i
|
|
|
|
|
if l < n, nums[l] > nums[ma] {
|
|
|
|
|
ma = l
|
|
|
|
|
}
|
|
|
|
|
if r < n, nums[r] > nums[ma] {
|
|
|
|
|
ma = r
|
|
|
|
|
}
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if ma == i {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
// 交换两节点
|
|
|
|
|
nums.swapAt(i, ma)
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
func heapSort(nums: inout [Int]) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for i in stride(from: nums.count / 2 - 1, through: 0, by: -1) {
|
|
|
|
|
siftDown(nums: &nums, n: nums.count, i: i)
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for i in stride(from: nums.count - 1, to: 0, by: -1) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
nums.swapAt(0, i)
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums: &nums, n: i, i: 0)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="heap_sort.js"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
function siftDown(nums, n, i) {
|
|
|
|
|
while (true) {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
let l = 2 * i + 1;
|
|
|
|
|
let r = 2 * i + 2;
|
|
|
|
|
let ma = i;
|
|
|
|
|
if (l < n && nums[l] > nums[ma]) {
|
|
|
|
|
ma = l;
|
|
|
|
|
}
|
|
|
|
|
if (r < n && nums[r] > nums[ma]) {
|
|
|
|
|
ma = r;
|
|
|
|
|
}
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if (ma === i) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// 交换两节点
|
|
|
|
|
[nums[i], nums[ma]] = [nums[ma], nums[i]];
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
function heapSort(nums) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {
|
|
|
|
|
siftDown(nums, nums.length, i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for (let i = nums.length - 1; i > 0; i--) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
[nums[0], nums[i]] = [nums[i], nums[0]];
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="heap_sort.ts"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
function siftDown(nums: number[], n: number, i: number): void {
|
|
|
|
|
while (true) {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
let l = 2 * i + 1;
|
|
|
|
|
let r = 2 * i + 2;
|
|
|
|
|
let ma = i;
|
|
|
|
|
if (l < n && nums[l] > nums[ma]) {
|
|
|
|
|
ma = l;
|
|
|
|
|
}
|
|
|
|
|
if (r < n && nums[r] > nums[ma]) {
|
|
|
|
|
ma = r;
|
|
|
|
|
}
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if (ma === i) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// 交换两节点
|
|
|
|
|
[nums[i], nums[ma]] = [nums[ma], nums[i]];
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
function heapSort(nums: number[]): void {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {
|
|
|
|
|
siftDown(nums, nums.length, i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for (let i = nums.length - 1; i > 0; i--) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
[nums[0], nums[i]] = [nums[i], nums[0]];
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="heap_sort.dart"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
void siftDown(List<int> nums, int n, int i) {
|
|
|
|
|
while (true) {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
int l = 2 * i + 1;
|
|
|
|
|
int r = 2 * i + 2;
|
|
|
|
|
int ma = i;
|
|
|
|
|
if (l < n && nums[l] > nums[ma]) ma = l;
|
|
|
|
|
if (r < n && nums[r] > nums[ma]) ma = r;
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if (ma == i) break;
|
|
|
|
|
// 交换两节点
|
|
|
|
|
int temp = nums[i];
|
|
|
|
|
nums[i] = nums[ma];
|
|
|
|
|
nums[ma] = temp;
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
void heapSort(List<int> nums) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for (int i = nums.length ~/ 2 - 1; i >= 0; i--) {
|
|
|
|
|
siftDown(nums, nums.length, i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for (int i = nums.length - 1; i > 0; i--) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
int tmp = nums[0];
|
|
|
|
|
nums[0] = nums[i];
|
|
|
|
|
nums[i] = tmp;
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="heap_sort.rs"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
fn sift_down(nums: &mut [i32], n: usize, mut i: usize) {
|
|
|
|
|
loop {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
let l = 2 * i + 1;
|
|
|
|
|
let r = 2 * i + 2;
|
|
|
|
|
let mut ma = i;
|
|
|
|
|
if l < n && nums[l] > nums[ma] {
|
|
|
|
|
ma = l;
|
|
|
|
|
}
|
|
|
|
|
if r < n && nums[r] > nums[ma] {
|
|
|
|
|
ma = r;
|
|
|
|
|
}
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if ma == i {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// 交换两节点
|
|
|
|
|
let temp = nums[i];
|
|
|
|
|
nums[i] = nums[ma];
|
|
|
|
|
nums[ma] = temp;
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
fn heap_sort(nums: &mut [i32]) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for i in (0..=nums.len() / 2 - 1).rev() {
|
|
|
|
|
sift_down(nums, nums.len(), i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for i in (1..=nums.len() - 1).rev() {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
let tmp = nums[0];
|
|
|
|
|
nums[0] = nums[i];
|
|
|
|
|
nums[i] = tmp;
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
sift_down(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="heap_sort.c"
|
|
|
|
|
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
|
|
|
|
|
void siftDown(int nums[], int n, int i) {
|
|
|
|
|
while (1) {
|
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
|
int l = 2 * i + 1;
|
|
|
|
|
int r = 2 * i + 2;
|
|
|
|
|
int ma = i;
|
|
|
|
|
if (l < n && nums[l] > nums[ma])
|
|
|
|
|
ma = l;
|
|
|
|
|
if (r < n && nums[r] > nums[ma])
|
|
|
|
|
ma = r;
|
|
|
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
|
|
|
if (ma == i) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
// 交换两节点
|
|
|
|
|
int temp = nums[i];
|
|
|
|
|
nums[i] = nums[ma];
|
|
|
|
|
nums[ma] = temp;
|
|
|
|
|
// 循环向下堆化
|
|
|
|
|
i = ma;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 堆排序 */
|
|
|
|
|
void heapSort(int nums[], int n) {
|
|
|
|
|
// 建堆操作:堆化除叶节点以外的其他所有节点
|
|
|
|
|
for (int i = n / 2 - 1; i >= 0; --i) {
|
|
|
|
|
siftDown(nums, n, i);
|
|
|
|
|
}
|
|
|
|
|
// 从堆中提取最大元素,循环 n-1 轮
|
|
|
|
|
for (int i = n - 1; i > 0; --i) {
|
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
|
int tmp = nums[0];
|
|
|
|
|
nums[0] = nums[i];
|
|
|
|
|
nums[i] = tmp;
|
|
|
|
|
// 以根节点为起点,从顶至底进行堆化
|
|
|
|
|
siftDown(nums, i, 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="heap_sort.zig"
|
|
|
|
|
[class]{}-[func]{siftDown}
|
|
|
|
|
|
|
|
|
|
[class]{}-[func]{heapSort}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 11.7.2 算法特性
|
|
|
|
|
|
|
|
|
|
- **时间复杂度 $O(n \log n)$、非自适应排序**:建堆操作使用 $O(n)$ 时间。从堆中提取最大元素的时间复杂度为 $O(\log n)$ ,共循环 $n - 1$ 轮。
|
|
|
|
|
- **空间复杂度 $O(1)$、原地排序**:几个指针变量使用 $O(1)$ 空间。元素交换和堆化操作都是在原数组上进行的。
|
|
|
|
|
- **非稳定排序**:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。
|