|
|
|
|
/**
|
|
|
|
|
* File: avl_tree.dart
|
|
|
|
|
* Created Time: 2023-04-04
|
|
|
|
|
* Author: liuyuxin (gvenusleo@gmail.com)
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
import 'dart:math';
|
|
|
|
|
import '../utils/print_util.dart';
|
|
|
|
|
import '../utils/tree_node.dart';
|
|
|
|
|
|
|
|
|
|
class AVLTree {
|
|
|
|
|
TreeNode? root;
|
|
|
|
|
|
|
|
|
|
/* 构造方法 */
|
|
|
|
|
AVLTree() {
|
|
|
|
|
root = null;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 获取节点高度 */
|
|
|
|
|
int height(TreeNode? node) {
|
|
|
|
|
// 空节点高度为 -1 ,叶节点高度为 0
|
|
|
|
|
return node == null ? -1 : node.height;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 更新节点高度 */
|
|
|
|
|
void updateHeight(TreeNode? node) {
|
|
|
|
|
// 节点高度等于最高子树高度 + 1
|
|
|
|
|
node!.height = max(height(node.left), height(node.right)) + 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 获取平衡因子 */
|
|
|
|
|
int balanceFactor(TreeNode? node) {
|
|
|
|
|
// 空节点平衡因子为 0
|
|
|
|
|
if (node == null) return 0;
|
|
|
|
|
// 节点平衡因子 = 左子树高度 - 右子树高度
|
|
|
|
|
return height(node.left) - height(node.right);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 右旋操作 */
|
|
|
|
|
TreeNode? rightRotate(TreeNode? node) {
|
|
|
|
|
TreeNode? child = node!.left;
|
|
|
|
|
TreeNode? grandChild = child!.right;
|
|
|
|
|
// 以 child 为原点,将 node 向右旋转
|
|
|
|
|
child.right = node;
|
|
|
|
|
node.left = grandChild;
|
|
|
|
|
// 更新节点高度
|
|
|
|
|
updateHeight(node);
|
|
|
|
|
updateHeight(child);
|
|
|
|
|
// 返回旋转后子树的根节点
|
|
|
|
|
return child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 左旋操作 */
|
|
|
|
|
TreeNode? leftRotate(TreeNode? node) {
|
|
|
|
|
TreeNode? child = node!.right;
|
|
|
|
|
TreeNode? grandChild = child!.left;
|
|
|
|
|
// 以 child 为原点,将 node 向左旋转
|
|
|
|
|
child.left = node;
|
|
|
|
|
node.right = grandChild;
|
|
|
|
|
// 更新节点高度
|
|
|
|
|
updateHeight(node);
|
|
|
|
|
updateHeight(child);
|
|
|
|
|
// 返回旋转后子树的根节点
|
|
|
|
|
return child;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
|
|
TreeNode? rotate(TreeNode? node) {
|
|
|
|
|
// 获取节点 node 的平衡因子
|
|
|
|
|
int factor = balanceFactor(node);
|
|
|
|
|
// 左偏树
|
|
|
|
|
if (factor > 1) {
|
|
|
|
|
if (balanceFactor(node!.left) >= 0) {
|
|
|
|
|
// 右旋
|
|
|
|
|
return rightRotate(node);
|
|
|
|
|
} else {
|
|
|
|
|
// 先左旋后右旋
|
|
|
|
|
node.left = leftRotate(node.left);
|
|
|
|
|
return rightRotate(node);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 右偏树
|
|
|
|
|
if (factor < -1) {
|
|
|
|
|
if (balanceFactor(node!.right) <= 0) {
|
|
|
|
|
// 左旋
|
|
|
|
|
return leftRotate(node);
|
|
|
|
|
} else {
|
|
|
|
|
// 先右旋后左旋
|
|
|
|
|
node.right = rightRotate(node.right);
|
|
|
|
|
return leftRotate(node);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// 平衡树,无须旋转,直接返回
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 插入节点 */
|
|
|
|
|
void insert(int val) {
|
|
|
|
|
root = insertHelper(root, val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 递归插入节点(辅助方法) */
|
|
|
|
|
TreeNode? insertHelper(TreeNode? node, int val) {
|
|
|
|
|
if (node == null) return TreeNode(val);
|
|
|
|
|
/* 1. 查找插入位置,并插入节点 */
|
|
|
|
|
if (val < node.val)
|
|
|
|
|
node.left = insertHelper(node.left, val);
|
|
|
|
|
else if (val > node.val)
|
|
|
|
|
node.right = insertHelper(node.right, val);
|
|
|
|
|
else
|
|
|
|
|
return node; // 重复节点不插入,直接返回
|
|
|
|
|
updateHeight(node); // 更新节点高度
|
|
|
|
|
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
|
|
node = rotate(node);
|
|
|
|
|
// 返回子树的根节点
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 删除节点 */
|
|
|
|
|
void remove(int val) {
|
|
|
|
|
root = removeHelper(root, val);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 递归删除节点(辅助方法) */
|
|
|
|
|
TreeNode? removeHelper(TreeNode? node, int val) {
|
|
|
|
|
if (node == null) return null;
|
|
|
|
|
/* 1. 查找节点,并删除之 */
|
|
|
|
|
if (val < node.val)
|
|
|
|
|
node.left = removeHelper(node.left, val);
|
|
|
|
|
else if (val > node.val)
|
|
|
|
|
node.right = removeHelper(node.right, val);
|
|
|
|
|
else {
|
|
|
|
|
if (node.left == null || node.right == null) {
|
|
|
|
|
TreeNode? child = node.left ?? node.right;
|
|
|
|
|
// 子节点数量 = 0 ,直接删除 node 并返回
|
|
|
|
|
if (child == null)
|
|
|
|
|
return null;
|
|
|
|
|
// 子节点数量 = 1 ,直接删除 node
|
|
|
|
|
else
|
|
|
|
|
node = child;
|
|
|
|
|
} else {
|
|
|
|
|
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
|
|
|
|
|
TreeNode? temp = node.right;
|
|
|
|
|
while (temp!.left != null) {
|
|
|
|
|
temp = temp.left;
|
|
|
|
|
}
|
|
|
|
|
node.right = removeHelper(node.right, temp.val);
|
|
|
|
|
node.val = temp.val;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
updateHeight(node); // 更新节点高度
|
|
|
|
|
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
|
|
|
|
node = rotate(node);
|
|
|
|
|
// 返回子树的根节点
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 查找节点 */
|
|
|
|
|
TreeNode? search(int val) {
|
|
|
|
|
TreeNode? cur = root;
|
|
|
|
|
// 循环查找,越过叶节点后跳出
|
|
|
|
|
while (cur != null) {
|
|
|
|
|
// 目标节点在 cur 的右子树中
|
|
|
|
|
if (val < cur.val)
|
|
|
|
|
cur = cur.left;
|
|
|
|
|
// 目标节点在 cur 的左子树中
|
|
|
|
|
else if (val > cur.val)
|
|
|
|
|
cur = cur.right;
|
|
|
|
|
// 目标节点与当前节点相等
|
|
|
|
|
else
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
return cur;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void testInsert(AVLTree tree, int val) {
|
|
|
|
|
tree.insert(val);
|
|
|
|
|
print("\n插入节点 $val 后,AVL 树为");
|
|
|
|
|
printTree(tree.root);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void testRemove(AVLTree tree, int val) {
|
|
|
|
|
tree.remove(val);
|
|
|
|
|
print("\n删除节点 $val 后,AVL 树为");
|
|
|
|
|
printTree(tree.root);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Driver Code */
|
|
|
|
|
void main() {
|
|
|
|
|
/* 初始化空 AVL 树 */
|
|
|
|
|
AVLTree avlTree = AVLTree();
|
|
|
|
|
/* 插入节点 */
|
|
|
|
|
// 请关注插入节点后,AVL 树是如何保持平衡的
|
|
|
|
|
testInsert(avlTree, 1);
|
|
|
|
|
testInsert(avlTree, 2);
|
|
|
|
|
testInsert(avlTree, 3);
|
|
|
|
|
testInsert(avlTree, 4);
|
|
|
|
|
testInsert(avlTree, 5);
|
|
|
|
|
testInsert(avlTree, 8);
|
|
|
|
|
testInsert(avlTree, 7);
|
|
|
|
|
testInsert(avlTree, 9);
|
|
|
|
|
testInsert(avlTree, 10);
|
|
|
|
|
testInsert(avlTree, 6);
|
|
|
|
|
|
|
|
|
|
/* 插入重复节点 */
|
|
|
|
|
testInsert(avlTree, 7);
|
|
|
|
|
|
|
|
|
|
/* 删除节点 */
|
|
|
|
|
// 请关注删除节点后,AVL 树是如何保持平衡的
|
|
|
|
|
testRemove(avlTree, 8); // 删除度为 0 的节点
|
|
|
|
|
testRemove(avlTree, 5); // 删除度为 1 的节点
|
|
|
|
|
testRemove(avlTree, 4); // 删除度为 2 的节点
|
|
|
|
|
|
|
|
|
|
/* 查询节点 */
|
|
|
|
|
TreeNode? node = avlTree.search(7);
|
|
|
|
|
print("\n查找到的节点对象为 $node ,节点值 = ${node!.val}");
|
|
|
|
|
}
|