|
|
|
---
|
|
|
|
comments: true
|
|
|
|
---
|
|
|
|
|
|
|
|
# 13.2 全排列問題
|
|
|
|
|
|
|
|
全排列問題是回溯演算法的一個典型應用。它的定義是在給定一個集合(如一個陣列或字串)的情況下,找出其中元素的所有可能的排列。
|
|
|
|
|
|
|
|
表 13-2 列舉了幾個示例資料,包括輸入陣列和對應的所有排列。
|
|
|
|
|
|
|
|
<p align="center"> 表 13-2 全排列示例 </p>
|
|
|
|
|
|
|
|
<div class="center-table" markdown>
|
|
|
|
|
|
|
|
| 輸入陣列 | 所有排列 |
|
|
|
|
| :---------- | :----------------------------------------------------------------- |
|
|
|
|
| $[1]$ | $[1]$ |
|
|
|
|
| $[1, 2]$ | $[1, 2], [2, 1]$ |
|
|
|
|
| $[1, 2, 3]$ | $[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]$ |
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
## 13.2.1 無相等元素的情況
|
|
|
|
|
|
|
|
!!! question
|
|
|
|
|
|
|
|
輸入一個整數陣列,其中不包含重複元素,返回所有可能的排列。
|
|
|
|
|
|
|
|
從回溯演算法的角度看,**我們可以把生成排列的過程想象成一系列選擇的結果**。假設輸入陣列為 $[1, 2, 3]$ ,如果我們先選擇 $1$ ,再選擇 $3$ ,最後選擇 $2$ ,則獲得排列 $[1, 3, 2]$ 。回退表示撤銷一個選擇,之後繼續嘗試其他選擇。
|
|
|
|
|
|
|
|
從回溯程式碼的角度看,候選集合 `choices` 是輸入陣列中的所有元素,狀態 `state` 是直至目前已被選擇的元素。請注意,每個元素只允許被選擇一次,**因此 `state` 中的所有元素都應該是唯一的**。
|
|
|
|
|
|
|
|
如圖 13-5 所示,我們可以將搜尋過程展開成一棵遞迴樹,樹中的每個節點代表當前狀態 `state` 。從根節點開始,經過三輪選擇後到達葉節點,每個葉節點都對應一個排列。
|
|
|
|
|
|
|
|
![全排列的遞迴樹](permutations_problem.assets/permutations_i.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
<p align="center"> 圖 13-5 全排列的遞迴樹 </p>
|
|
|
|
|
|
|
|
### 1. 重複選擇剪枝
|
|
|
|
|
|
|
|
為了實現每個元素只被選擇一次,我們考慮引入一個布林型陣列 `selected` ,其中 `selected[i]` 表示 `choices[i]` 是否已被選擇,並基於它實現以下剪枝操作。
|
|
|
|
|
|
|
|
- 在做出選擇 `choice[i]` 後,我們就將 `selected[i]` 賦值為 $\text{True}$ ,代表它已被選擇。
|
|
|
|
- 走訪選擇串列 `choices` 時,跳過所有已被選擇的節點,即剪枝。
|
|
|
|
|
|
|
|
如圖 13-6 所示,假設我們第一輪選擇 1 ,第二輪選擇 3 ,第三輪選擇 2 ,則需要在第二輪剪掉元素 1 的分支,在第三輪剪掉元素 1 和元素 3 的分支。
|
|
|
|
|
|
|
|
![全排列剪枝示例](permutations_problem.assets/permutations_i_pruning.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
<p align="center"> 圖 13-6 全排列剪枝示例 </p>
|
|
|
|
|
|
|
|
觀察圖 13-6 發現,該剪枝操作將搜尋空間大小從 $O(n^n)$ 減小至 $O(n!)$ 。
|
|
|
|
|
|
|
|
### 2. 程式碼實現
|
|
|
|
|
|
|
|
想清楚以上資訊之後,我們就可以在框架程式碼中做“完形填空”了。為了縮短整體程式碼,我們不單獨實現框架程式碼中的各個函式,而是將它們展開在 `backtrack()` 函式中:
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python title="permutations_i.py"
|
|
|
|
def backtrack(
|
|
|
|
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
|
|
|
|
):
|
|
|
|
"""回溯演算法:全排列 I"""
|
|
|
|
# 當狀態長度等於元素數量時,記錄解
|
|
|
|
if len(state) == len(choices):
|
|
|
|
res.append(list(state))
|
|
|
|
return
|
|
|
|
# 走訪所有選擇
|
|
|
|
for i, choice in enumerate(choices):
|
|
|
|
# 剪枝:不允許重複選擇元素
|
|
|
|
if not selected[i]:
|
|
|
|
# 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = True
|
|
|
|
state.append(choice)
|
|
|
|
# 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res)
|
|
|
|
# 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = False
|
|
|
|
state.pop()
|
|
|
|
|
|
|
|
def permutations_i(nums: list[int]) -> list[list[int]]:
|
|
|
|
"""全排列 I"""
|
|
|
|
res = []
|
|
|
|
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
|
|
|
|
return res
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
```cpp title="permutations_i.cpp"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.size() == choices.size()) {
|
|
|
|
res.push_back(state);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for (int i = 0; i < choices.size(); i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state.push_back(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.pop_back();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
vector<vector<int>> permutationsI(vector<int> nums) {
|
|
|
|
vector<int> state;
|
|
|
|
vector<bool> selected(nums.size(), false);
|
|
|
|
vector<vector<int>> res;
|
|
|
|
backtrack(state, nums, selected, res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
```java title="permutations_i.java"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.size() == choices.length) {
|
|
|
|
res.add(new ArrayList<Integer>(state));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for (int i = 0; i < choices.length; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state.add(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.remove(state.size() - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
List<List<Integer>> permutationsI(int[] nums) {
|
|
|
|
List<List<Integer>> res = new ArrayList<List<Integer>>();
|
|
|
|
backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
```csharp title="permutations_i.cs"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.Count == choices.Length) {
|
|
|
|
res.Add(new List<int>(state));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for (int i = 0; i < choices.Length; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state.Add(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
Backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.RemoveAt(state.Count - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
List<List<int>> PermutationsI(int[] nums) {
|
|
|
|
List<List<int>> res = [];
|
|
|
|
Backtrack([], nums, new bool[nums.Length], res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
```go title="permutations_i.go"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
func backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if len(*state) == len(*choices) {
|
|
|
|
newState := append([]int{}, *state...)
|
|
|
|
*res = append(*res, newState)
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for i := 0; i < len(*choices); i++ {
|
|
|
|
choice := (*choices)[i]
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if !(*selected)[i] {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
(*selected)[i] = true
|
|
|
|
*state = append(*state, choice)
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrackI(state, choices, selected, res)
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
(*selected)[i] = false
|
|
|
|
*state = (*state)[:len(*state)-1]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
func permutationsI(nums []int) [][]int {
|
|
|
|
res := make([][]int, 0)
|
|
|
|
state := make([]int, 0)
|
|
|
|
selected := make([]bool, len(nums))
|
|
|
|
backtrackI(&state, &nums, &selected, &res)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
```swift title="permutations_i.swift"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if state.count == choices.count {
|
|
|
|
res.append(state)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for (i, choice) in choices.enumerated() {
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if !selected[i] {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true
|
|
|
|
state.append(choice)
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state: &state, choices: choices, selected: &selected, res: &res)
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false
|
|
|
|
state.removeLast()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
func permutationsI(nums: [Int]) -> [[Int]] {
|
|
|
|
var state: [Int] = []
|
|
|
|
var selected = Array(repeating: false, count: nums.count)
|
|
|
|
var res: [[Int]] = []
|
|
|
|
backtrack(state: &state, choices: nums, selected: &selected, res: &res)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
```javascript title="permutations_i.js"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
function backtrack(state, choices, selected, res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.length === choices.length) {
|
|
|
|
res.push([...state]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
choices.forEach((choice, i) => {
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state.push(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.pop();
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
function permutationsI(nums) {
|
|
|
|
const res = [];
|
|
|
|
backtrack([], nums, Array(nums.length).fill(false), res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
```typescript title="permutations_i.ts"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
function backtrack(
|
|
|
|
state: number[],
|
|
|
|
choices: number[],
|
|
|
|
selected: boolean[],
|
|
|
|
res: number[][]
|
|
|
|
): void {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.length === choices.length) {
|
|
|
|
res.push([...state]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
choices.forEach((choice, i) => {
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state.push(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.pop();
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
function permutationsI(nums: number[]): number[][] {
|
|
|
|
const res: number[][] = [];
|
|
|
|
backtrack([], nums, Array(nums.length).fill(false), res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
```dart title="permutations_i.dart"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
void backtrack(
|
|
|
|
List<int> state,
|
|
|
|
List<int> choices,
|
|
|
|
List<bool> selected,
|
|
|
|
List<List<int>> res,
|
|
|
|
) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.length == choices.length) {
|
|
|
|
res.add(List.from(state));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for (int i = 0; i < choices.length; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state.add(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.removeLast();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
List<List<int>> permutationsI(List<int> nums) {
|
|
|
|
List<List<int>> res = [];
|
|
|
|
backtrack([], nums, List.filled(nums.length, false), res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
```rust title="permutations_i.rs"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if state.len() == choices.len() {
|
|
|
|
res.push(state);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for i in 0..choices.len() {
|
|
|
|
let choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if !selected[i] {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state.push(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state.clone(), choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.remove(state.len() - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
fn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {
|
|
|
|
let mut res = Vec::new(); // 狀態(子集)
|
|
|
|
backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
|
|
|
|
res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
```c title="permutations_i.c"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
void backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (stateSize == choicesSize) {
|
|
|
|
res[*resSize] = (int *)malloc(choicesSize * sizeof(int));
|
|
|
|
for (int i = 0; i < choicesSize; i++) {
|
|
|
|
res[*resSize][i] = state[i];
|
|
|
|
}
|
|
|
|
(*resSize)++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for (int i = 0; i < choicesSize; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true;
|
|
|
|
state[stateSize] = choice;
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
int **permutationsI(int *nums, int numsSize, int *returnSize) {
|
|
|
|
int *state = (int *)malloc(numsSize * sizeof(int));
|
|
|
|
bool *selected = (bool *)malloc(numsSize * sizeof(bool));
|
|
|
|
for (int i = 0; i < numsSize; i++) {
|
|
|
|
selected[i] = false;
|
|
|
|
}
|
|
|
|
int **res = (int **)malloc(MAX_SIZE * sizeof(int *));
|
|
|
|
*returnSize = 0;
|
|
|
|
|
|
|
|
backtrack(state, 0, nums, numsSize, selected, res, returnSize);
|
|
|
|
|
|
|
|
free(state);
|
|
|
|
free(selected);
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
```kotlin title="permutations_i.kt"
|
|
|
|
/* 回溯演算法:全排列 I */
|
|
|
|
fun backtrack(
|
|
|
|
state: MutableList<Int>,
|
|
|
|
choices: IntArray,
|
|
|
|
selected: BooleanArray,
|
|
|
|
res: MutableList<MutableList<Int>?>
|
|
|
|
) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.size == choices.size) {
|
|
|
|
res.add(state.toMutableList())
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
for (i in choices.indices) {
|
|
|
|
val choice = choices[i]
|
|
|
|
// 剪枝:不允許重複選擇元素
|
|
|
|
if (!selected[i]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
selected[i] = true
|
|
|
|
state.add(choice)
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res)
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false
|
|
|
|
state.removeAt(state.size - 1)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 I */
|
|
|
|
fun permutationsI(nums: IntArray): MutableList<MutableList<Int>?> {
|
|
|
|
val res = mutableListOf<MutableList<Int>?>()
|
|
|
|
backtrack(mutableListOf(), nums, BooleanArray(nums.size), res)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Ruby"
|
|
|
|
|
|
|
|
```ruby title="permutations_i.rb"
|
|
|
|
[class]{}-[func]{backtrack}
|
|
|
|
|
|
|
|
[class]{}-[func]{permutations_i}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
```zig title="permutations_i.zig"
|
|
|
|
[class]{}-[func]{backtrack}
|
|
|
|
|
|
|
|
[class]{}-[func]{permutationsI}
|
|
|
|
```
|
|
|
|
|
|
|
|
??? pythontutor "視覺化執行"
|
|
|
|
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_i%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%203%5D%0A%0A%20%20%20%20res%20%3D%20permutations_i%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_i%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20I%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%203%5D%0A%0A%20%20%20%20res%20%3D%20permutations_i%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|
|
|
|
|
|
|
## 13.2.2 考慮相等元素的情況
|
|
|
|
|
|
|
|
!!! question
|
|
|
|
|
|
|
|
輸入一個整數陣列,**陣列中可能包含重複元素**,返回所有不重複的排列。
|
|
|
|
|
|
|
|
假設輸入陣列為 $[1, 1, 2]$ 。為了方便區分兩個重複元素 $1$ ,我們將第二個 $1$ 記為 $\hat{1}$ 。
|
|
|
|
|
|
|
|
如圖 13-7 所示,上述方法生成的排列有一半是重複的。
|
|
|
|
|
|
|
|
![重複排列](permutations_problem.assets/permutations_ii.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
<p align="center"> 圖 13-7 重複排列 </p>
|
|
|
|
|
|
|
|
那麼如何去除重複的排列呢?最直接地,考慮藉助一個雜湊集合,直接對排列結果進行去重。然而這樣做不夠優雅,**因為生成重複排列的搜尋分支沒有必要,應當提前識別並剪枝**,這樣可以進一步提升演算法效率。
|
|
|
|
|
|
|
|
### 1. 相等元素剪枝
|
|
|
|
|
|
|
|
觀察圖 13-8 ,在第一輪中,選擇 $1$ 或選擇 $\hat{1}$ 是等價的,在這兩個選擇之下生成的所有排列都是重複的。因此應該把 $\hat{1}$ 剪枝。
|
|
|
|
|
|
|
|
同理,在第一輪選擇 $2$ 之後,第二輪選擇中的 $1$ 和 $\hat{1}$ 也會產生重複分支,因此也應將第二輪的 $\hat{1}$ 剪枝。
|
|
|
|
|
|
|
|
從本質上看,**我們的目標是在某一輪選擇中,保證多個相等的元素僅被選擇一次**。
|
|
|
|
|
|
|
|
![重複排列剪枝](permutations_problem.assets/permutations_ii_pruning.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
<p align="center"> 圖 13-8 重複排列剪枝 </p>
|
|
|
|
|
|
|
|
### 2. 程式碼實現
|
|
|
|
|
|
|
|
在上一題的程式碼的基礎上,我們考慮在每一輪選擇中開啟一個雜湊集合 `duplicated` ,用於記錄該輪中已經嘗試過的元素,並將重複元素剪枝:
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
```python title="permutations_ii.py"
|
|
|
|
def backtrack(
|
|
|
|
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
|
|
|
|
):
|
|
|
|
"""回溯演算法:全排列 II"""
|
|
|
|
# 當狀態長度等於元素數量時,記錄解
|
|
|
|
if len(state) == len(choices):
|
|
|
|
res.append(list(state))
|
|
|
|
return
|
|
|
|
# 走訪所有選擇
|
|
|
|
duplicated = set[int]()
|
|
|
|
for i, choice in enumerate(choices):
|
|
|
|
# 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if not selected[i] and choice not in duplicated:
|
|
|
|
# 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.add(choice) # 記錄選擇過的元素值
|
|
|
|
selected[i] = True
|
|
|
|
state.append(choice)
|
|
|
|
# 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res)
|
|
|
|
# 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = False
|
|
|
|
state.pop()
|
|
|
|
|
|
|
|
def permutations_ii(nums: list[int]) -> list[list[int]]:
|
|
|
|
"""全排列 II"""
|
|
|
|
res = []
|
|
|
|
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
|
|
|
|
return res
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
```cpp title="permutations_ii.cpp"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
void backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.size() == choices.size()) {
|
|
|
|
res.push_back(state);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
unordered_set<int> duplicated;
|
|
|
|
for (int i = 0; i < choices.size(); i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && duplicated.find(choice) == duplicated.end()) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.emplace(choice); // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state.push_back(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.pop_back();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
vector<vector<int>> permutationsII(vector<int> nums) {
|
|
|
|
vector<int> state;
|
|
|
|
vector<bool> selected(nums.size(), false);
|
|
|
|
vector<vector<int>> res;
|
|
|
|
backtrack(state, nums, selected, res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
```java title="permutations_ii.java"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
void backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.size() == choices.length) {
|
|
|
|
res.add(new ArrayList<Integer>(state));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
Set<Integer> duplicated = new HashSet<Integer>();
|
|
|
|
for (int i = 0; i < choices.length; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && !duplicated.contains(choice)) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.add(choice); // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state.add(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.remove(state.size() - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
List<List<Integer>> permutationsII(int[] nums) {
|
|
|
|
List<List<Integer>> res = new ArrayList<List<Integer>>();
|
|
|
|
backtrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
```csharp title="permutations_ii.cs"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
void Backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.Count == choices.Length) {
|
|
|
|
res.Add(new List<int>(state));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
HashSet<int> duplicated = [];
|
|
|
|
for (int i = 0; i < choices.Length; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && !duplicated.Contains(choice)) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.Add(choice); // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state.Add(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
Backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.RemoveAt(state.Count - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
List<List<int>> PermutationsII(int[] nums) {
|
|
|
|
List<List<int>> res = [];
|
|
|
|
Backtrack([], nums, new bool[nums.Length], res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
```go title="permutations_ii.go"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
func backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if len(*state) == len(*choices) {
|
|
|
|
newState := append([]int{}, *state...)
|
|
|
|
*res = append(*res, newState)
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
duplicated := make(map[int]struct{}, 0)
|
|
|
|
for i := 0; i < len(*choices); i++ {
|
|
|
|
choice := (*choices)[i]
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if _, ok := duplicated[choice]; !ok && !(*selected)[i] {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
// 記錄選擇過的元素值
|
|
|
|
duplicated[choice] = struct{}{}
|
|
|
|
(*selected)[i] = true
|
|
|
|
*state = append(*state, choice)
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrackII(state, choices, selected, res)
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
(*selected)[i] = false
|
|
|
|
*state = (*state)[:len(*state)-1]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
func permutationsII(nums []int) [][]int {
|
|
|
|
res := make([][]int, 0)
|
|
|
|
state := make([]int, 0)
|
|
|
|
selected := make([]bool, len(nums))
|
|
|
|
backtrackII(&state, &nums, &selected, &res)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
```swift title="permutations_ii.swift"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
func backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if state.count == choices.count {
|
|
|
|
res.append(state)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
var duplicated: Set<Int> = []
|
|
|
|
for (i, choice) in choices.enumerated() {
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if !selected[i], !duplicated.contains(choice) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.insert(choice) // 記錄選擇過的元素值
|
|
|
|
selected[i] = true
|
|
|
|
state.append(choice)
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state: &state, choices: choices, selected: &selected, res: &res)
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false
|
|
|
|
state.removeLast()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
func permutationsII(nums: [Int]) -> [[Int]] {
|
|
|
|
var state: [Int] = []
|
|
|
|
var selected = Array(repeating: false, count: nums.count)
|
|
|
|
var res: [[Int]] = []
|
|
|
|
backtrack(state: &state, choices: nums, selected: &selected, res: &res)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
```javascript title="permutations_ii.js"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
function backtrack(state, choices, selected, res) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.length === choices.length) {
|
|
|
|
res.push([...state]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
const duplicated = new Set();
|
|
|
|
choices.forEach((choice, i) => {
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && !duplicated.has(choice)) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.add(choice); // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state.push(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.pop();
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
function permutationsII(nums) {
|
|
|
|
const res = [];
|
|
|
|
backtrack([], nums, Array(nums.length).fill(false), res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
```typescript title="permutations_ii.ts"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
function backtrack(
|
|
|
|
state: number[],
|
|
|
|
choices: number[],
|
|
|
|
selected: boolean[],
|
|
|
|
res: number[][]
|
|
|
|
): void {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.length === choices.length) {
|
|
|
|
res.push([...state]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
const duplicated = new Set();
|
|
|
|
choices.forEach((choice, i) => {
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && !duplicated.has(choice)) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.add(choice); // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state.push(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.pop();
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
function permutationsII(nums: number[]): number[][] {
|
|
|
|
const res: number[][] = [];
|
|
|
|
backtrack([], nums, Array(nums.length).fill(false), res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
```dart title="permutations_ii.dart"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
void backtrack(
|
|
|
|
List<int> state,
|
|
|
|
List<int> choices,
|
|
|
|
List<bool> selected,
|
|
|
|
List<List<int>> res,
|
|
|
|
) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.length == choices.length) {
|
|
|
|
res.add(List.from(state));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
Set<int> duplicated = {};
|
|
|
|
for (int i = 0; i < choices.length; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && !duplicated.contains(choice)) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.add(choice); // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state.add(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.removeLast();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
List<List<int>> permutationsII(List<int> nums) {
|
|
|
|
List<List<int>> res = [];
|
|
|
|
backtrack([], nums, List.filled(nums.length, false), res);
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
```rust title="permutations_ii.rs"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
fn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if state.len() == choices.len() {
|
|
|
|
res.push(state);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
let mut duplicated = HashSet::<i32>::new();
|
|
|
|
for i in 0..choices.len() {
|
|
|
|
let choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if !selected[i] && !duplicated.contains(&choice) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.insert(choice); // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state.push(choice);
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state.clone(), choices, selected, res);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
state.remove(state.len() - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
fn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {
|
|
|
|
let mut res = Vec::new();
|
|
|
|
backtrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);
|
|
|
|
res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
```c title="permutations_ii.c"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
void backtrack(int *state, int stateSize, int *choices, int choicesSize, bool *selected, int **res, int *resSize) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (stateSize == choicesSize) {
|
|
|
|
res[*resSize] = (int *)malloc(choicesSize * sizeof(int));
|
|
|
|
for (int i = 0; i < choicesSize; i++) {
|
|
|
|
res[*resSize][i] = state[i];
|
|
|
|
}
|
|
|
|
(*resSize)++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
bool duplicated[MAX_SIZE] = {false};
|
|
|
|
for (int i = 0; i < choicesSize; i++) {
|
|
|
|
int choice = choices[i];
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && !duplicated[choice]) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated[choice] = true; // 記錄選擇過的元素值
|
|
|
|
selected[i] = true;
|
|
|
|
state[stateSize] = choice;
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, stateSize + 1, choices, choicesSize, selected, res, resSize);
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
int **permutationsII(int *nums, int numsSize, int *returnSize) {
|
|
|
|
int *state = (int *)malloc(numsSize * sizeof(int));
|
|
|
|
bool *selected = (bool *)malloc(numsSize * sizeof(bool));
|
|
|
|
for (int i = 0; i < numsSize; i++) {
|
|
|
|
selected[i] = false;
|
|
|
|
}
|
|
|
|
int **res = (int **)malloc(MAX_SIZE * sizeof(int *));
|
|
|
|
*returnSize = 0;
|
|
|
|
|
|
|
|
backtrack(state, 0, nums, numsSize, selected, res, returnSize);
|
|
|
|
|
|
|
|
free(state);
|
|
|
|
free(selected);
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
```kotlin title="permutations_ii.kt"
|
|
|
|
/* 回溯演算法:全排列 II */
|
|
|
|
fun backtrack(
|
|
|
|
state: MutableList<Int>,
|
|
|
|
choices: IntArray,
|
|
|
|
selected: BooleanArray,
|
|
|
|
res: MutableList<MutableList<Int>?>
|
|
|
|
) {
|
|
|
|
// 當狀態長度等於元素數量時,記錄解
|
|
|
|
if (state.size == choices.size) {
|
|
|
|
res.add(state.toMutableList())
|
|
|
|
return
|
|
|
|
}
|
|
|
|
// 走訪所有選擇
|
|
|
|
val duplicated = HashSet<Int>()
|
|
|
|
for (i in choices.indices) {
|
|
|
|
val choice = choices[i]
|
|
|
|
// 剪枝:不允許重複選擇元素 且 不允許重複選擇相等元素
|
|
|
|
if (!selected[i] && !duplicated.contains(choice)) {
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
duplicated.add(choice) // 記錄選擇過的元素值
|
|
|
|
selected[i] = true
|
|
|
|
state.add(choice)
|
|
|
|
// 進行下一輪選擇
|
|
|
|
backtrack(state, choices, selected, res)
|
|
|
|
// 回退:撤銷選擇,恢復到之前的狀態
|
|
|
|
selected[i] = false
|
|
|
|
state.removeAt(state.size - 1)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 全排列 II */
|
|
|
|
fun permutationsII(nums: IntArray): MutableList<MutableList<Int>?> {
|
|
|
|
val res = mutableListOf<MutableList<Int>?>()
|
|
|
|
backtrack(mutableListOf(), nums, BooleanArray(nums.size), res)
|
|
|
|
return res
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Ruby"
|
|
|
|
|
|
|
|
```ruby title="permutations_ii.rb"
|
|
|
|
[class]{}-[func]{backtrack}
|
|
|
|
|
|
|
|
[class]{}-[func]{permutations_ii}
|
|
|
|
```
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
```zig title="permutations_ii.zig"
|
|
|
|
[class]{}-[func]{backtrack}
|
|
|
|
|
|
|
|
[class]{}-[func]{permutationsII}
|
|
|
|
```
|
|
|
|
|
|
|
|
??? pythontutor "視覺化執行"
|
|
|
|
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20duplicated%20%3D%20set%5Bint%5D%28%29%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%20%E4%B8%94%20%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E7%9B%B8%E7%AD%89%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%20and%20choice%20not%20in%20duplicated%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20duplicated.add%28choice%29%20%20%23%20%E8%A8%98%E9%8C%84%E9%81%B8%E6%93%87%E9%81%8E%E7%9A%84%E5%85%83%E7%B4%A0%E5%80%BC%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_ii%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%202%5D%0A%0A%20%20%20%20res%20%3D%20permutations_ii%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28%0A%20%20%20%20state%3A%20list%5Bint%5D%2C%20choices%3A%20list%5Bint%5D%2C%20selected%3A%20list%5Bbool%5D%2C%20res%3A%20list%5Blist%5Bint%5D%5D%0A%29%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%E6%BC%94%E7%AE%97%E6%B3%95%EF%BC%9A%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%8B%80%E6%85%8B%E9%95%B7%E5%BA%A6%E7%AD%89%E6%96%BC%E5%85%83%E7%B4%A0%E6%95%B8%E9%87%8F%E6%99%82%EF%BC%8C%E8%A8%98%E9%8C%84%E8%A7%A3%0A%20%20%20%20if%20len%28state%29%20%3D%3D%20len%28choices%29%3A%0A%20%20%20%20%20%20%20%20res.append%28list%28state%29%29%0A%20%20%20%20%20%20%20%20return%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20duplicated%20%3D%20set%5Bint%5D%28%29%0A%20%20%20%20for%20i%2C%20choice%20in%20enumerate%28choices%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E5%85%83%E7%B4%A0%20%E4%B8%94%20%E4%B8%8D%E5%85%81%E8%A8%B1%E9%87%8D%E8%A4%87%E9%81%B8%E6%93%87%E7%9B%B8%E7%AD%89%E5%85%83%E7%B4%A0%0A%20%20%20%20%20%20%20%20if%20not%20selected%5Bi%5D%20and%20choice%20not%20in%20duplicated%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20duplicated.add%28choice%29%20%20%23%20%E8%A8%98%E9%8C%84%E9%81%B8%E6%93%87%E9%81%8E%E7%9A%84%E5%85%83%E7%B4%A0%E5%80%BC%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20True%0A%20%20%20%20%20%20%20%20%20%20%20%20state.append%28choice%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E9%80%B2%E8%A1%8C%E4%B8%8B%E4%B8%80%E8%BC%AA%E9%81%B8%E6%93%87%0A%20%20%20%20%20%20%20%20%20%20%20%20backtrack%28state%2C%20choices%2C%20selected%2C%20res%29%0A%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%EF%BC%9A%E6%92%A4%E9%8A%B7%E9%81%B8%E6%93%87%EF%BC%8C%E6%81%A2%E5%BE%A9%E5%88%B0%E4%B9%8B%E5%89%8D%E7%9A%84%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20%20%20%20%20selected%5Bi%5D%20%3D%20False%0A%20%20%20%20%20%20%20%20%20%20%20%20state.pop%28%29%0A%0A%0Adef%20permutations_ii%28nums%3A%20list%5Bint%5D%29%20-%3E%20list%5Blist%5Bint%5D%5D%3A%0A%20%20%20%20%22%22%22%E5%85%A8%E6%8E%92%E5%88%97%20II%22%22%22%0A%20%20%20%20res%20%3D%20%5B%5D%0A%20%20%20%20backtrack%28state%3D%5B%5D%2C%20choices%3Dnums%2C%20selected%3D%5BFalse%5D%20%2A%20len%28nums%29%2C%20res%3Dres%29%0A%20%20%20%20return%20res%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20nums%20%3D%20%5B1%2C%202%2C%202%5D%0A%0A%20%20%20%20res%20%3D%20permutations_ii%28nums%29%0A%0A%20%20%20%20print%28f%22%E8%BC%B8%E5%85%A5%E9%99%A3%E5%88%97%20nums%20%3D%20%7Bnums%7D%22%29%0A%20%20%20%20print%28f%22%E6%89%80%E6%9C%89%E6%8E%92%E5%88%97%20res%20%3D%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=13&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|
|
|
|
|
|
|
假設元素兩兩之間互不相同,則 $n$ 個元素共有 $n!$ 種排列(階乘);在記錄結果時,需要複製長度為 $n$ 的串列,使用 $O(n)$ 時間。**因此時間複雜度為 $O(n!n)$** 。
|
|
|
|
|
|
|
|
最大遞迴深度為 $n$ ,使用 $O(n)$ 堆疊幀空間。`selected` 使用 $O(n)$ 空間。同一時刻最多共有 $n$ 個 `duplicated` ,使用 $O(n^2)$ 空間。**因此空間複雜度為 $O(n^2)$** 。
|
|
|
|
|
|
|
|
### 3. 兩種剪枝對比
|
|
|
|
|
|
|
|
請注意,雖然 `selected` 和 `duplicated` 都用於剪枝,但兩者的目標不同。
|
|
|
|
|
|
|
|
- **重複選擇剪枝**:整個搜尋過程中只有一個 `selected` 。它記錄的是當前狀態中包含哪些元素,其作用是避免某個元素在 `state` 中重複出現。
|
|
|
|
- **相等元素剪枝**:每輪選擇(每個呼叫的 `backtrack` 函式)都包含一個 `duplicated` 。它記錄的是在本輪走訪(`for` 迴圈)中哪些元素已被選擇過,其作用是保證相等元素只被選擇一次。
|
|
|
|
|
|
|
|
圖 13-9 展示了兩個剪枝條件的生效範圍。注意,樹中的每個節點代表一個選擇,從根節點到葉節點的路徑上的各個節點構成一個排列。
|
|
|
|
|
|
|
|
![兩種剪枝條件的作用範圍](permutations_problem.assets/permutations_ii_pruning_summary.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
<p align="center"> 圖 13-9 兩種剪枝條件的作用範圍 </p>
|