You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_computational_compl.../space_complexity.md

525 lines
15 KiB

---
comments: true
---
# 空间复杂度
「空间复杂度 Space Complexity」统计 **算法使用内存空间随着数据量变大时的增长趋势** 。这个概念与时间复杂度很类似。
## 算法相关空间
算法运行中,使用的内存空间主要有以下几种:
- 「输入空间」用于存储算法的输入数据;
- 「暂存空间」用于存储算法运行中的变量、对象、函数上下文等数据;
- 「输出空间」用于存储算法的输出数据;
!!! tip
通常情况下,空间复杂度统计范围是「暂存空间」+「输出空间」。
暂存空间可分为三个部分:
- 「暂存数据」用于保存算法运行中的各种 **常量、变量、对象** 等。
- 「栈帧空间」用于保存调用函数的上下文数据。系统每次调用函数都会在栈的顶部创建一个栈帧,函数返回时,栈帧空间会被释放。
- 「指令空间」用于保存编译后的程序指令,**在实际统计中一般忽略不计**。
![space_types](space_complexity.assets/space_types.png)
2 years ago
<p align="center"> Fig. 算法使用的相关空间 </p>
=== "Java"
```java title=""
/* 类 */
class Node {
int val;
Node next;
Node(int x) { val = x; }
}
/* 函数(或称方法) */
int function() {
// do something...
return 0;
}
int algorithm(int n) { // 输入数据
final int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
Node node = new Node(0); // 暂存数据(对象)
int c = function(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
```
=== "C++"
```cpp title=""
/* 结构体 */
struct Node {
int val;
Node *next;
Node(int x) : val(x), next(nullptr) {}
};
/* 函数(或称方法) */
int func() {
// do something...
return 0;
}
int algorithm(int n) { // 输入数据
const int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
Node* node = new Node(0); // 暂存数据(对象)
int c = func(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
```
=== "Python"
```python title=""
""" 类 """
class Node:
def __init__(self, x):
self.val = x # 结点值
self.next = None # 指向下一结点的指针(引用)
""" 函数(或称方法) """
def function():
# do something...
return 0
def algorithm(n): # 输入数据
b = 0 # 暂存数据(变量)
node = Node(0) # 暂存数据(对象)
c = function() # 栈帧空间(调用函数)
return a + b + c # 输出数据
```
## 推算方法
空间复杂度的推算方法和时间复杂度总体类似,只是从统计 “计算操作数量” 变为统计 “使用空间大小” 。与时间复杂度不同的是,**我们一般只关注「最差空间复杂度」**。这是因为内存空间是一个硬性要求,我们必须保证在所有输入数据下都有足够的内存空间预留。
**最差空间复杂度中的 “最差” 有两层含义**,分别为输入数据的最差分布、算法运行中的最差时间点。
- **以最差输入数据为准。** 当 $n < 10$ 时,空间复杂度为 $O(1)$ ;但是当 $n > 10$ 时,初始化的数组 `nums` 使用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$
- **以算法运行过程中的峰值内存为准。** 程序在执行最后一行之前,使用 $O(1)$ 空间;当初始化数组 `nums` 时,程序使用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$
=== "Java"
```java title=""
void algorithm(int n) {
int a = 0; // O(1)
int[] b = new int[10000]; // O(1)
if (n > 10)
int[] nums = new int[n]; // O(n)
}
```
=== "C++"
```cpp title=""
void algorithm(int n) {
int a = 0; // O(1)
vector<int> b(10000); // O(1)
if (n > 10)
vector<int> nums(n); // O(n)
}
```
=== "Python"
```python title=""
def algorithm(n):
a = 0 # O(1)
b = [0] * 10000 # O(1)
if n > 10:
nums = [0] * n # O(n)
```
**在递归函数中,需要注意统计栈帧空间。** 例如函数 `loop()`,在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。而递归函数 `recur()` 在运行中会同时存在 $n$ 个未返回的 `recur()` ,从而使用 $O(n)$ 的栈帧空间。
=== "Java"
```java title=""
int function() {
// do something
return 0;
}
/* 循环 O(1) */
void loop(int n) {
for (int i = 0; i < n; i++) {
function();
}
}
/* 递归 O(n) */
void recur(int n) {
if (n == 1) return;
return recur(n - 1);
}
```
=== "C++"
```cpp title=""
int func() {
// do something
return 0;
}
/* 循环 O(1) */
void loop(int n) {
for (int i = 0; i < n; i++) {
func();
}
}
/* 递归 O(n) */
void recur(int n) {
if (n == 1) return;
return recur(n - 1);
}
```
=== "Python"
```python title=""
def function():
# do something
return 0
""" 循环 O(1) """
def loop(n):
for _ in range(n):
function()
""" 递归 O(n) """
def recur(n):
if n == 1: return
return recur(n - 1)
```
## 常见类型
设输入数据大小为 $n$ ,常见的空间复杂度类型有(从低到高排列)
$$
\begin{aligned}
O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{平方阶} < \text{指数阶}
\end{aligned}
$$
![space_complexity_common_types](space_complexity.assets/space_complexity_common_types.png)
2 years ago
<p align="center"> Fig. 空间复杂度的常见类型 </p>
!!! tip
部分示例代码需要一些前置知识,包括数组、链表、二叉树、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解时间复杂度含义和推算方法上。
### 常数阶 $O(1)$
常数阶常见于数量与输入数据大小 $n$ 无关的常量、变量、对象。
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,即不会累积占用空间,空间复杂度仍为 $O(1)$ 。
=== "Java"
```java title="space_complexity_types.java"
/* 常数阶 */
void constant(int n) {
// 常量、变量、对象占用 O(1) 空间
final int a = 0;
int b = 0;
int[] nums = new int[10000];
ListNode node = new ListNode(0);
// 循环中的变量占用 O(1) 空间
for (int i = 0; i < n; i++) {
int c = 0;
}
// 循环中的函数占用 O(1) 空间
for (int i = 0; i < n; i++) {
function();
}
}
```
=== "C++"
```cpp title="space_complexity_types.cpp"
/* 常数阶 */
void constant(int n) {
// 常量、变量、对象占用 O(1) 空间
const int a = 0;
int b = 0;
vector<int> nums(10000);
ListNode* node = new ListNode(0);
// 循环中的变量占用 O(1) 空间
for (int i = 0; i < n; i++) {
int c = 0;
}
// 循环中的函数占用 O(1) 空间
for (int i = 0; i < n; i++) {
func();
}
}
```
=== "Python"
```python title="space_complexity_types.py"
""" 常数阶 """
def constant(n):
# 常量、变量、对象占用 O(1) 空间
a = 0
nums = [0] * 10000
node = ListNode(0)
# 循环中的变量占用 O(1) 空间
for _ in range(n):
c = 0
# 循环中的函数占用 O(1) 空间
for _ in range(n):
function()
```
### 线性阶 $O(n)$
线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等。
=== "Java"
```java title="space_complexity_types.java"
/* 线性阶 */
void linear(int n) {
// 长度为 n 的数组占用 O(n) 空间
int[] nums = new int[n];
// 长度为 n 的列表占用 O(n) 空间
List<ListNode> nodes = new ArrayList<>();
for (int i = 0; i < n; i++) {
nodes.add(new ListNode(i));
}
// 长度为 n 的哈希表占用 O(n) 空间
Map<Integer, String> map = new HashMap<>();
for (int i = 0; i < n; i++) {
map.put(i, String.valueOf(i));
}
}
```
=== "C++"
```cpp title="space_complexity_types.cpp"
/* 线性阶 */
void linear(int n) {
// 长度为 n 的数组占用 O(n) 空间
vector<int> nums(n);
// 长度为 n 的列表占用 O(n) 空间
vector<ListNode*> nodes;
for (int i = 0; i < n; i++) {
nodes.push_back(new ListNode(i));
}
// 长度为 n 的哈希表占用 O(n) 空间
unordered_map<int, string> map;
for (int i = 0; i < n; i++) {
map[i] = to_string(i);
}
}
```
=== "Python"
```python title="space_complexity_types.py"
""" 线性阶 """
def linear(n):
# 长度为 n 的列表占用 O(n) 空间
nums = [0] * n
# 长度为 n 的哈希表占用 O(n) 空间
mapp = {}
for i in range(n):
mapp[i] = str(i)
```
以下递归函数会同时存在 $n$ 个未返回的 `algorithm()` 函数,使用 $O(n)$ 大小的栈帧空间。
=== "Java"
```java title="space_complexity_types.java"
/* 线性阶(递归实现) */
void linearRecur(int n) {
System.out.println("递归 n = " + n);
if (n == 1) return;
linearRecur(n - 1);
}
```
=== "C++"
```cpp title="space_complexity_types.cpp"
/* 线性阶(递归实现) */
void linearRecur(int n) {
cout << "递归 n = " << n << endl;
if (n == 1) return;
linearRecur(n - 1);
}
```
=== "Python"
```python title="space_complexity_types.py"
""" 线性阶(递归实现) """
def linearRecur(n):
print("递归 n = ", n)
if n == 1: return
linearRecur(n - 1)
```
![space_complexity_recursive_linear](space_complexity.assets/space_complexity_recursive_linear.png)
2 years ago
<p align="center"> Fig. 递归函数产生的线性阶空间复杂度 </p>
### 平方阶 $O(n^2)$
平方阶常见于元素数量与 $n$ 成平方关系的矩阵、图。
=== "Java"
```java title="space_complexity_types.java"
/* 平方阶 */
void quadratic(int n) {
// 矩阵占用 O(n^2) 空间
int [][]numMatrix = new int[n][n];
// 二维列表占用 O(n^2) 空间
List<List<Integer>> numList = new ArrayList<>();
for (int i = 0; i < n; i++) {
List<Integer> tmp = new ArrayList<>();
for (int j = 0; j < n; j++) {
tmp.add(0);
}
numList.add(tmp);
}
}
```
=== "C++"
```cpp title="space_complexity_types.cpp"
/* 平方阶 */
void quadratic(int n) {
// 二维列表占用 O(n^2) 空间
vector<vector<int>> numMatrix;
for (int i = 0; i < n; i++) {
vector<int> tmp;
for (int j = 0; j < n; j++) {
tmp.push_back(0);
}
numMatrix.push_back(tmp);
}
}
```
=== "Python"
```python title="space_complexity_types.py"
""" 平方阶 """
def quadratic(n):
# 二维列表占用 O(n^2) 空间
num_matrix = [[0] * n for _ in range(n)]
```
在以下递归函数中,同时存在 $n$ 个未返回的 `algorihtm()` ,并且每个函数中都初始化了一个数组,长度分别为 $n, n-1, n-2, ..., 2, 1$ ,平均长度为 $\frac{n}{2}$ ,因此总体使用 $O(n^2)$ 空间。
=== "Java"
```java title="space_complexity_types.java"
/* 平方阶(递归实现) */
int quadraticRecur(int n) {
if (n <= 0) return 0;
// 数组 nums 长度为 n, n-1, ..., 2, 1
int[] nums = new int[n];
return quadraticRecur(n - 1);
}
```
=== "C++"
```cpp title="space_complexity_types.cpp"
/* 平方阶(递归实现) */
int quadraticRecur(int n) {
if (n <= 0) return 0;
vector<int> nums(n);
cout << "递归 n = " << n << " nums = " << nums.size() << endl;
return quadraticRecur(n - 1);
}
```
=== "Python"
```python title="space_complexity_types.py"
""" 平方阶(递归实现) """
def quadratic_recur(n):
if n <= 0: return 0
# 数组 nums 长度为 n, n-1, ..., 2, 1
nums = [0] * n
return quadratic_recur(n - 1)
```
![space_complexity_recursive_quadratic](space_complexity.assets/space_complexity_recursive_quadratic.png)
2 years ago
<p align="center"> Fig. 递归函数产生的平方阶空间复杂度 </p>
### 指数阶 $O(2^n)$
指数阶常见于二叉树。高度为 $n$ 的「满二叉树」的结点数量为 $2^n - 1$ ,使用 $O(2^n)$ 空间。
=== "Java"
```java title="space_complexity_types.java"
/* 指数阶(建立满二叉树) */
TreeNode buildTree(int n) {
if (n == 0) return null;
TreeNode root = new TreeNode(0);
root.left = buildTree(n - 1);
root.right = buildTree(n - 1);
return root;
}
```
=== "C++"
```cpp title="space_complexity_types.cpp"
/* 指数阶(建立满二叉树) */
TreeNode* buildTree(int n) {
if (n == 0) return nullptr;
TreeNode* root = new TreeNode(0);
root->left = buildTree(n - 1);
root->right = buildTree(n - 1);
return root;
}
```
=== "Python"
```python title="space_complexity_types.py"
""" 指数阶(建立满二叉树) """
def build_tree(n):
if n == 0: return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)
return root
```
![space_complexity_exponential](space_complexity.assets/space_complexity_exponential.png)
2 years ago
<p align="center"> Fig. 满二叉树下的指数阶空间复杂度 </p>
### 对数阶 $O(\log n)$
对数阶常见于分治算法、数据类型转换等。
例如「归并排序」,长度为 $n$ 的数组可以形成高度为 $\log n$ 的递归树,因此空间复杂度为 $O(\log n)$ 。
再例如「数字转化为字符串」,输入任意正整数 $n$ ,它的位数为 $\log_{10} n$ ,即对应字符串长度为 $\log_{10} n$ ,因此空间复杂度为 $O(\log_{10} n) = O(\log n)$ 。