|
|
|
|
---
|
|
|
|
|
comments: true
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
# 14.1 初探動態規劃
|
|
|
|
|
|
|
|
|
|
<u>動態規劃(dynamic programming)</u>是一個重要的演算法範式,它將一個問題分解為一系列更小的子問題,並透過儲存子問題的解來避免重複計算,從而大幅提升時間效率。
|
|
|
|
|
|
|
|
|
|
在本節中,我們從一個經典例題入手,先給出它的暴力回溯解法,觀察其中包含的重疊子問題,再逐步導出更高效的動態規劃解法。
|
|
|
|
|
|
|
|
|
|
!!! question "爬樓梯"
|
|
|
|
|
|
|
|
|
|
給定一個共有 $n$ 階的樓梯,你每步可以上 $1$ 階或者 $2$ 階,請問有多少種方案可以爬到樓頂?
|
|
|
|
|
|
|
|
|
|
如圖 14-1 所示,對於一個 $3$ 階樓梯,共有 $3$ 種方案可以爬到樓頂。
|
|
|
|
|
|
|
|
|
|
![爬到第 3 階的方案數量](intro_to_dynamic_programming.assets/climbing_stairs_example.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 圖 14-1 爬到第 3 階的方案數量 </p>
|
|
|
|
|
|
|
|
|
|
本題的目標是求解方案數量,**我們可以考慮透過回溯來窮舉所有可能性**。具體來說,將爬樓梯想象為一個多輪選擇的過程:從地面出發,每輪選擇上 $1$ 階或 $2$ 階,每當到達樓梯頂部時就將方案數量加 $1$ ,當越過樓梯頂部時就將其剪枝。程式碼如下所示:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="climbing_stairs_backtrack.py"
|
|
|
|
|
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
|
|
|
|
|
"""回溯"""
|
|
|
|
|
# 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if state == n:
|
|
|
|
|
res[0] += 1
|
|
|
|
|
# 走訪所有選擇
|
|
|
|
|
for choice in choices:
|
|
|
|
|
# 剪枝:不允許越過第 n 階
|
|
|
|
|
if state + choice > n:
|
|
|
|
|
continue
|
|
|
|
|
# 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res)
|
|
|
|
|
# 回退
|
|
|
|
|
|
|
|
|
|
def climbing_stairs_backtrack(n: int) -> int:
|
|
|
|
|
"""爬樓梯:回溯"""
|
|
|
|
|
choices = [1, 2] # 可選擇向上爬 1 階或 2 階
|
|
|
|
|
state = 0 # 從第 0 階開始爬
|
|
|
|
|
res = [0] # 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res)
|
|
|
|
|
return res[0]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="climbing_stairs_backtrack.cpp"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state == n)
|
|
|
|
|
res[0]++;
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (auto &choice : choices) {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n)
|
|
|
|
|
continue;
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
int climbingStairsBacktrack(int n) {
|
|
|
|
|
vector<int> choices = {1, 2}; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
int state = 0; // 從第 0 階開始爬
|
|
|
|
|
vector<int> res = {0}; // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res);
|
|
|
|
|
return res[0];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="climbing_stairs_backtrack.java"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
void backtrack(List<Integer> choices, int state, int n, List<Integer> res) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state == n)
|
|
|
|
|
res.set(0, res.get(0) + 1);
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (Integer choice : choices) {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n)
|
|
|
|
|
continue;
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
int climbingStairsBacktrack(int n) {
|
|
|
|
|
List<Integer> choices = Arrays.asList(1, 2); // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
int state = 0; // 從第 0 階開始爬
|
|
|
|
|
List<Integer> res = new ArrayList<>();
|
|
|
|
|
res.add(0); // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res);
|
|
|
|
|
return res.get(0);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="climbing_stairs_backtrack.cs"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
void Backtrack(List<int> choices, int state, int n, List<int> res) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state == n)
|
|
|
|
|
res[0]++;
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
foreach (int choice in choices) {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n)
|
|
|
|
|
continue;
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
Backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
int ClimbingStairsBacktrack(int n) {
|
|
|
|
|
List<int> choices = [1, 2]; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
int state = 0; // 從第 0 階開始爬
|
|
|
|
|
List<int> res = [0]; // 使用 res[0] 記錄方案數量
|
|
|
|
|
Backtrack(choices, state, n, res);
|
|
|
|
|
return res[0];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="climbing_stairs_backtrack.go"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
func backtrack(choices []int, state, n int, res []int) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if state == n {
|
|
|
|
|
res[0] = res[0] + 1
|
|
|
|
|
}
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for _, choice := range choices {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if state+choice > n {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state+choice, n, res)
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
func climbingStairsBacktrack(n int) int {
|
|
|
|
|
// 可選擇向上爬 1 階或 2 階
|
|
|
|
|
choices := []int{1, 2}
|
|
|
|
|
// 從第 0 階開始爬
|
|
|
|
|
state := 0
|
|
|
|
|
res := make([]int, 1)
|
|
|
|
|
// 使用 res[0] 記錄方案數量
|
|
|
|
|
res[0] = 0
|
|
|
|
|
backtrack(choices, state, n, res)
|
|
|
|
|
return res[0]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="climbing_stairs_backtrack.swift"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
func backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if state == n {
|
|
|
|
|
res[0] += 1
|
|
|
|
|
}
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for choice in choices {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if state + choice > n {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices: choices, state: state + choice, n: n, res: &res)
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
func climbingStairsBacktrack(n: Int) -> Int {
|
|
|
|
|
let choices = [1, 2] // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
let state = 0 // 從第 0 階開始爬
|
|
|
|
|
var res: [Int] = []
|
|
|
|
|
res.append(0) // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices: choices, state: state, n: n, res: &res)
|
|
|
|
|
return res[0]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="climbing_stairs_backtrack.js"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
function backtrack(choices, state, n, res) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state === n) res.set(0, res.get(0) + 1);
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (const choice of choices) {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n) continue;
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
function climbingStairsBacktrack(n) {
|
|
|
|
|
const choices = [1, 2]; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
const state = 0; // 從第 0 階開始爬
|
|
|
|
|
const res = new Map();
|
|
|
|
|
res.set(0, 0); // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res);
|
|
|
|
|
return res.get(0);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="climbing_stairs_backtrack.ts"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
function backtrack(
|
|
|
|
|
choices: number[],
|
|
|
|
|
state: number,
|
|
|
|
|
n: number,
|
|
|
|
|
res: Map<0, any>
|
|
|
|
|
): void {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state === n) res.set(0, res.get(0) + 1);
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (const choice of choices) {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n) continue;
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
function climbingStairsBacktrack(n: number): number {
|
|
|
|
|
const choices = [1, 2]; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
const state = 0; // 從第 0 階開始爬
|
|
|
|
|
const res = new Map();
|
|
|
|
|
res.set(0, 0); // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res);
|
|
|
|
|
return res.get(0);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="climbing_stairs_backtrack.dart"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
void backtrack(List<int> choices, int state, int n, List<int> res) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state == n) {
|
|
|
|
|
res[0]++;
|
|
|
|
|
}
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (int choice in choices) {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n) continue;
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
int climbingStairsBacktrack(int n) {
|
|
|
|
|
List<int> choices = [1, 2]; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
int state = 0; // 從第 0 階開始爬
|
|
|
|
|
List<int> res = [];
|
|
|
|
|
res.add(0); // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res);
|
|
|
|
|
return res[0];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="climbing_stairs_backtrack.rs"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
fn backtrack(choices: &[i32], state: i32, n: i32, res: &mut [i32]) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if state == n {
|
|
|
|
|
res[0] = res[0] + 1;
|
|
|
|
|
}
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for &choice in choices {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if state + choice > n {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
fn climbing_stairs_backtrack(n: usize) -> i32 {
|
|
|
|
|
let choices = vec![1, 2]; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
let state = 0; // 從第 0 階開始爬
|
|
|
|
|
let mut res = Vec::new();
|
|
|
|
|
res.push(0); // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(&choices, state, n as i32, &mut res);
|
|
|
|
|
res[0]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="climbing_stairs_backtrack.c"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
void backtrack(int *choices, int state, int n, int *res, int len) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state == n)
|
|
|
|
|
res[0]++;
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (int i = 0; i < len; i++) {
|
|
|
|
|
int choice = choices[i];
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n)
|
|
|
|
|
continue;
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res, len);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
int climbingStairsBacktrack(int n) {
|
|
|
|
|
int choices[2] = {1, 2}; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
int state = 0; // 從第 0 階開始爬
|
|
|
|
|
int *res = (int *)malloc(sizeof(int));
|
|
|
|
|
*res = 0; // 使用 res[0] 記錄方案數量
|
|
|
|
|
int len = sizeof(choices) / sizeof(int);
|
|
|
|
|
backtrack(choices, state, n, res, len);
|
|
|
|
|
int result = *res;
|
|
|
|
|
free(res);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title="climbing_stairs_backtrack.kt"
|
|
|
|
|
/* 回溯 */
|
|
|
|
|
fun backtrack(
|
|
|
|
|
choices: MutableList<Int>,
|
|
|
|
|
state: Int,
|
|
|
|
|
n: Int,
|
|
|
|
|
res: MutableList<Int>
|
|
|
|
|
) {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state == n)
|
|
|
|
|
res[0] = res[0] + 1
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (choice in choices) {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n) continue
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res)
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:回溯 */
|
|
|
|
|
fun climbingStairsBacktrack(n: Int): Int {
|
|
|
|
|
val choices = mutableListOf(1, 2) // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
val state = 0 // 從第 0 階開始爬
|
|
|
|
|
val res = mutableListOf<Int>()
|
|
|
|
|
res.add(0) // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res)
|
|
|
|
|
return res[0]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Ruby"
|
|
|
|
|
|
|
|
|
|
```ruby title="climbing_stairs_backtrack.rb"
|
|
|
|
|
### 回溯 ###
|
|
|
|
|
def backtrack(choices, state, n, res)
|
|
|
|
|
# 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
res[0] += 1 if state == n
|
|
|
|
|
# 走訪所有選擇
|
|
|
|
|
for choice in choices
|
|
|
|
|
# 剪枝:不允許越過第 n 階
|
|
|
|
|
next if state + choice > n
|
|
|
|
|
|
|
|
|
|
# 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res)
|
|
|
|
|
end
|
|
|
|
|
# 回退
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
### 爬樓梯:回溯 ###
|
|
|
|
|
def climbing_stairs_backtrack(n)
|
|
|
|
|
choices = [1, 2] # 可選擇向上爬 1 階或 2 階
|
|
|
|
|
state = 0 # 從第 0 階開始爬
|
|
|
|
|
res = [0] # 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(choices, state, n, res)
|
|
|
|
|
res.first
|
|
|
|
|
end
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="climbing_stairs_backtrack.zig"
|
|
|
|
|
// 回溯
|
|
|
|
|
fn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {
|
|
|
|
|
// 當爬到第 n 階時,方案數量加 1
|
|
|
|
|
if (state == n) {
|
|
|
|
|
res.items[0] = res.items[0] + 1;
|
|
|
|
|
}
|
|
|
|
|
// 走訪所有選擇
|
|
|
|
|
for (choices) |choice| {
|
|
|
|
|
// 剪枝:不允許越過第 n 階
|
|
|
|
|
if (state + choice > n) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
// 嘗試:做出選擇,更新狀態
|
|
|
|
|
backtrack(choices, state + choice, n, res);
|
|
|
|
|
// 回退
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 爬樓梯:回溯
|
|
|
|
|
fn climbingStairsBacktrack(n: usize) !i32 {
|
|
|
|
|
var choices = [_]i32{ 1, 2 }; // 可選擇向上爬 1 階或 2 階
|
|
|
|
|
var state: i32 = 0; // 從第 0 階開始爬
|
|
|
|
|
var res = std.ArrayList(i32).init(std.heap.page_allocator);
|
|
|
|
|
defer res.deinit();
|
|
|
|
|
try res.append(0); // 使用 res[0] 記錄方案數量
|
|
|
|
|
backtrack(&choices, state, @intCast(n), res);
|
|
|
|
|
return res.items[0];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
??? pythontutor "視覺化執行"
|
|
|
|
|
|
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28choices%3A%20list%5Bint%5D%2C%20state%3A%20int%2C%20n%3A%20int%2C%20res%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%88%AC%E5%88%B0%E7%AC%AC%20n%20%E9%9A%8E%E6%99%82%EF%BC%8C%E6%96%B9%E6%A1%88%E6%95%B8%E9%87%8F%E5%8A%A0%201%0A%20%20%20%20if%20state%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res%5B0%5D%20%2B%3D%201%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20choice%20in%20choices%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E8%B6%8A%E9%81%8E%E7%AC%AC%20n%20%E9%9A%8E%0A%20%20%20%20%20%20%20%20if%20state%20%2B%20choice%20%3E%20n%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20continue%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20backtrack%28choices%2C%20state%20%2B%20choice%2C%20n%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%0A%0A%0Adef%20climbing_stairs_backtrack%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E5%9B%9E%E6%BA%AF%22%22%22%0A%20%20%20%20choices%20%3D%20%5B1%2C%202%5D%20%20%23%20%E5%8F%AF%E9%81%B8%E6%93%87%E5%90%91%E4%B8%8A%E7%88%AC%201%20%E9%9A%8E%E6%88%96%202%20%E9%9A%8E%0A%20%20%20%20state%20%3D%200%20%20%23%20%E5%BE%9E%E7%AC%AC%200%20%E9%9A%8E%E9%96%8B%E5%A7%8B%E7%88%AC%0A%20%20%20%20res%20%3D%20%5B0%5D%20%20%23%20%E4%BD%BF%E7%94%A8%20res%5B0%5D%20%E8%A8%98%E9%8C%84%E6%96%B9%E6%A1%88%E6%95%B8%E9%87%8F%0A%20%20%20%20backtrack%28choices%2C%20state%2C%20n%2C%20res%29%0A%20%20%20%20return%20res%5B0%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_backtrack%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
|
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20backtrack%28choices%3A%20list%5Bint%5D%2C%20state%3A%20int%2C%20n%3A%20int%2C%20res%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%9B%9E%E6%BA%AF%22%22%22%0A%20%20%20%20%23%20%E7%95%B6%E7%88%AC%E5%88%B0%E7%AC%AC%20n%20%E9%9A%8E%E6%99%82%EF%BC%8C%E6%96%B9%E6%A1%88%E6%95%B8%E9%87%8F%E5%8A%A0%201%0A%20%20%20%20if%20state%20%3D%3D%20n%3A%0A%20%20%20%20%20%20%20%20res%5B0%5D%20%2B%3D%201%0A%20%20%20%20%23%20%E8%B5%B0%E8%A8%AA%E6%89%80%E6%9C%89%E9%81%B8%E6%93%87%0A%20%20%20%20for%20choice%20in%20choices%3A%0A%20%20%20%20%20%20%20%20%23%20%E5%89%AA%E6%9E%9D%EF%BC%9A%E4%B8%8D%E5%85%81%E8%A8%B1%E8%B6%8A%E9%81%8E%E7%AC%AC%20n%20%E9%9A%8E%0A%20%20%20%20%20%20%20%20if%20state%20%2B%20choice%20%3E%20n%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20continue%0A%20%20%20%20%20%20%20%20%23%20%E5%98%97%E8%A9%A6%EF%BC%9A%E5%81%9A%E5%87%BA%E9%81%B8%E6%93%87%EF%BC%8C%E6%9B%B4%E6%96%B0%E7%8B%80%E6%85%8B%0A%20%20%20%20%20%20%20%20backtrack%28choices%2C%20state%20%2B%20choice%2C%20n%2C%20res%29%0A%20%20%20%20%20%20%20%20%23%20%E5%9B%9E%E9%80%80%0A%0A%0Adef%20climbing_stairs_backtrack%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E5%9B%9E%E6%BA%AF%22%22%22%0A%20%20%20%20choices%20%3D%20%5B1%2C%202%5D%20%20%23%20%E5%8F%AF%E9%81%B8%E6%93%87%E5%90%91%E4%B8%8A%E7%88%AC%201%20%E9%9A%8E%E6%88%96%202%20%E9%9A%8E%0A%20%20%20%20state%20%3D%200%20%20%23%20%E5%BE%9E%E7%AC%AC%200%20%E9%9A%8E%E9%96%8B%E5%A7%8B%E7%88%AC%0A%20%20%20%20res%20%3D%20%5B0%5D%20%20%23%20%E4%BD%BF%E7%94%A8%20res%5B0%5D%20%E8%A8%98%E9%8C%84%E6%96%B9%E6%A1%88%E6%95%B8%E9%87%8F%0A%20%20%20%20backtrack%28choices%2C%20state%2C%20n%2C%20res%29%0A%20%20%20%20return%20res%5B0%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%204%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_backtrack%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|
|
|
|
|
|
|
|
|
## 14.1.1 方法一:暴力搜尋
|
|
|
|
|
|
|
|
|
|
回溯演算法通常並不顯式地對問題進行拆解,而是將求解問題看作一系列決策步驟,透過試探和剪枝,搜尋所有可能的解。
|
|
|
|
|
|
|
|
|
|
我們可以嘗試從問題分解的角度分析這道題。設爬到第 $i$ 階共有 $dp[i]$ 種方案,那麼 $dp[i]$ 就是原問題,其子問題包括:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
dp[i-1], dp[i-2], \dots, dp[2], dp[1]
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
由於每輪只能上 $1$ 階或 $2$ 階,因此當我們站在第 $i$ 階樓梯上時,上一輪只可能站在第 $i - 1$ 階或第 $i - 2$ 階上。換句話說,我們只能從第 $i -1$ 階或第 $i - 2$ 階邁向第 $i$ 階。
|
|
|
|
|
|
|
|
|
|
由此便可得出一個重要推論:**爬到第 $i - 1$ 階的方案數加上爬到第 $i - 2$ 階的方案數就等於爬到第 $i$ 階的方案數**。公式如下:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
這意味著在爬樓梯問題中,各個子問題之間存在遞推關係,**原問題的解可以由子問題的解構建得來**。圖 14-2 展示了該遞推關係。
|
|
|
|
|
|
|
|
|
|
![方案數量遞推關係](intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 圖 14-2 方案數量遞推關係 </p>
|
|
|
|
|
|
|
|
|
|
我們可以根據遞推公式得到暴力搜尋解法。以 $dp[n]$ 為起始點,**遞迴地將一個較大問題拆解為兩個較小問題的和**,直至到達最小子問題 $dp[1]$ 和 $dp[2]$ 時返回。其中,最小子問題的解是已知的,即 $dp[1] = 1$、$dp[2] = 2$ ,表示爬到第 $1$、$2$ 階分別有 $1$、$2$ 種方案。
|
|
|
|
|
|
|
|
|
|
觀察以下程式碼,它和標準回溯程式碼都屬於深度優先搜尋,但更加簡潔:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="climbing_stairs_dfs.py"
|
|
|
|
|
def dfs(i: int) -> int:
|
|
|
|
|
"""搜尋"""
|
|
|
|
|
# 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 or i == 2:
|
|
|
|
|
return i
|
|
|
|
|
# dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
count = dfs(i - 1) + dfs(i - 2)
|
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
def climbing_stairs_dfs(n: int) -> int:
|
|
|
|
|
"""爬樓梯:搜尋"""
|
|
|
|
|
return dfs(n)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="climbing_stairs_dfs.cpp"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
int dfs(int i) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
int climbingStairsDFS(int n) {
|
|
|
|
|
return dfs(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="climbing_stairs_dfs.java"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
int dfs(int i) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
int climbingStairsDFS(int n) {
|
|
|
|
|
return dfs(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="climbing_stairs_dfs.cs"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
int DFS(int i) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = DFS(i - 1) + DFS(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
int ClimbingStairsDFS(int n) {
|
|
|
|
|
return DFS(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="climbing_stairs_dfs.go"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
func dfs(i int) int {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 || i == 2 {
|
|
|
|
|
return i
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
count := dfs(i-1) + dfs(i-2)
|
|
|
|
|
return count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
func climbingStairsDFS(n int) int {
|
|
|
|
|
return dfs(n)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="climbing_stairs_dfs.swift"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
func dfs(i: Int) -> Int {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 || i == 2 {
|
|
|
|
|
return i
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
let count = dfs(i: i - 1) + dfs(i: i - 2)
|
|
|
|
|
return count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
func climbingStairsDFS(n: Int) -> Int {
|
|
|
|
|
dfs(i: n)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="climbing_stairs_dfs.js"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
function dfs(i) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i === 1 || i === 2) return i;
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
const count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
function climbingStairsDFS(n) {
|
|
|
|
|
return dfs(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="climbing_stairs_dfs.ts"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
function dfs(i: number): number {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i === 1 || i === 2) return i;
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
const count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
function climbingStairsDFS(n: number): number {
|
|
|
|
|
return dfs(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="climbing_stairs_dfs.dart"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
int dfs(int i) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2) return i;
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
int climbingStairsDFS(int n) {
|
|
|
|
|
return dfs(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="climbing_stairs_dfs.rs"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
fn dfs(i: usize) -> i32 {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 || i == 2 {
|
|
|
|
|
return i as i32;
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
let count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
fn climbing_stairs_dfs(n: usize) -> i32 {
|
|
|
|
|
dfs(n)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="climbing_stairs_dfs.c"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
int dfs(int i) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
int climbingStairsDFS(int n) {
|
|
|
|
|
return dfs(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title="climbing_stairs_dfs.kt"
|
|
|
|
|
/* 搜尋 */
|
|
|
|
|
fun dfs(i: Int): Int {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2) return i
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
val count = dfs(i - 1) + dfs(i - 2)
|
|
|
|
|
return count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:搜尋 */
|
|
|
|
|
fun climbingStairsDFS(n: Int): Int {
|
|
|
|
|
return dfs(n)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Ruby"
|
|
|
|
|
|
|
|
|
|
```ruby title="climbing_stairs_dfs.rb"
|
|
|
|
|
### 搜尋 ###
|
|
|
|
|
def dfs(i)
|
|
|
|
|
# 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
return i if i == 1 || i == 2
|
|
|
|
|
# dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
dfs(i - 1) + dfs(i - 2)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
### 爬樓梯:搜尋 ###
|
|
|
|
|
def climbing_stairs_dfs(n)
|
|
|
|
|
dfs(n)
|
|
|
|
|
end
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="climbing_stairs_dfs.zig"
|
|
|
|
|
// 搜尋
|
|
|
|
|
fn dfs(i: usize) i32 {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 or i == 2) {
|
|
|
|
|
return @intCast(i);
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
var count = dfs(i - 1) + dfs(i - 2);
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 爬樓梯:搜尋
|
|
|
|
|
fn climbingStairsDFS(comptime n: usize) i32 {
|
|
|
|
|
return dfs(n);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
??? pythontutor "視覺化執行"
|
|
|
|
|
|
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201%29%20%2B%20dfs%28i%20-%202%29%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20return%20dfs%28n%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
|
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201%29%20%2B%20dfs%28i%20-%202%29%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20return%20dfs%28n%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|
|
|
|
|
|
|
|
|
圖 14-3 展示了暴力搜尋形成的遞迴樹。對於問題 $dp[n]$ ,其遞迴樹的深度為 $n$ ,時間複雜度為 $O(2^n)$ 。指數階屬於爆炸式增長,如果我們輸入一個比較大的 $n$ ,則會陷入漫長的等待之中。
|
|
|
|
|
|
|
|
|
|
![爬樓梯對應遞迴樹](intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 圖 14-3 爬樓梯對應遞迴樹 </p>
|
|
|
|
|
|
|
|
|
|
觀察圖 14-3 ,**指數階的時間複雜度是“重疊子問題”導致的**。例如 $dp[9]$ 被分解為 $dp[8]$ 和 $dp[7]$ ,$dp[8]$ 被分解為 $dp[7]$ 和 $dp[6]$ ,兩者都包含子問題 $dp[7]$ 。
|
|
|
|
|
|
|
|
|
|
以此類推,子問題中包含更小的重疊子問題,子子孫孫無窮盡也。絕大部分計算資源都浪費在這些重疊的子問題上。
|
|
|
|
|
|
|
|
|
|
## 14.1.2 方法二:記憶化搜尋
|
|
|
|
|
|
|
|
|
|
為了提升演算法效率,**我們希望所有的重疊子問題都只被計算一次**。為此,我們宣告一個陣列 `mem` 來記錄每個子問題的解,並在搜尋過程中將重疊子問題剪枝。
|
|
|
|
|
|
|
|
|
|
1. 當首次計算 $dp[i]$ 時,我們將其記錄至 `mem[i]` ,以便之後使用。
|
|
|
|
|
2. 當再次需要計算 $dp[i]$ 時,我們便可直接從 `mem[i]` 中獲取結果,從而避免重複計算該子問題。
|
|
|
|
|
|
|
|
|
|
程式碼如下所示:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="climbing_stairs_dfs_mem.py"
|
|
|
|
|
def dfs(i: int, mem: list[int]) -> int:
|
|
|
|
|
"""記憶化搜尋"""
|
|
|
|
|
# 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 or i == 2:
|
|
|
|
|
return i
|
|
|
|
|
# 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if mem[i] != -1:
|
|
|
|
|
return mem[i]
|
|
|
|
|
# dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
count = dfs(i - 1, mem) + dfs(i - 2, mem)
|
|
|
|
|
# 記錄 dp[i]
|
|
|
|
|
mem[i] = count
|
|
|
|
|
return count
|
|
|
|
|
|
|
|
|
|
def climbing_stairs_dfs_mem(n: int) -> int:
|
|
|
|
|
"""爬樓梯:記憶化搜尋"""
|
|
|
|
|
# mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
mem = [-1] * (n + 1)
|
|
|
|
|
return dfs(n, mem)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="climbing_stairs_dfs_mem.cpp"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
int dfs(int i, vector<int> &mem) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1)
|
|
|
|
|
return mem[i];
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
int climbingStairsDFSMem(int n) {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
vector<int> mem(n + 1, -1);
|
|
|
|
|
return dfs(n, mem);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="climbing_stairs_dfs_mem.java"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
int dfs(int i, int[] mem) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1)
|
|
|
|
|
return mem[i];
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
int climbingStairsDFSMem(int n) {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
int[] mem = new int[n + 1];
|
|
|
|
|
Arrays.fill(mem, -1);
|
|
|
|
|
return dfs(n, mem);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="climbing_stairs_dfs_mem.cs"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
int DFS(int i, int[] mem) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1)
|
|
|
|
|
return mem[i];
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = DFS(i - 1, mem) + DFS(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
int ClimbingStairsDFSMem(int n) {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
int[] mem = new int[n + 1];
|
|
|
|
|
Array.Fill(mem, -1);
|
|
|
|
|
return DFS(n, mem);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="climbing_stairs_dfs_mem.go"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
func dfsMem(i int, mem []int) int {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 || i == 2 {
|
|
|
|
|
return i
|
|
|
|
|
}
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if mem[i] != -1 {
|
|
|
|
|
return mem[i]
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
count := dfsMem(i-1, mem) + dfsMem(i-2, mem)
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count
|
|
|
|
|
return count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
func climbingStairsDFSMem(n int) int {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
mem := make([]int, n+1)
|
|
|
|
|
for i := range mem {
|
|
|
|
|
mem[i] = -1
|
|
|
|
|
}
|
|
|
|
|
return dfsMem(n, mem)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="climbing_stairs_dfs_mem.swift"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
func dfs(i: Int, mem: inout [Int]) -> Int {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 || i == 2 {
|
|
|
|
|
return i
|
|
|
|
|
}
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if mem[i] != -1 {
|
|
|
|
|
return mem[i]
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
let count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count
|
|
|
|
|
return count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
func climbingStairsDFSMem(n: Int) -> Int {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
var mem = Array(repeating: -1, count: n + 1)
|
|
|
|
|
return dfs(i: n, mem: &mem)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="climbing_stairs_dfs_mem.js"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
function dfs(i, mem) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i === 1 || i === 2) return i;
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1) return mem[i];
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
function climbingStairsDFSMem(n) {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
const mem = new Array(n + 1).fill(-1);
|
|
|
|
|
return dfs(n, mem);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="climbing_stairs_dfs_mem.ts"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
function dfs(i: number, mem: number[]): number {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i === 1 || i === 2) return i;
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1) return mem[i];
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
const count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
function climbingStairsDFSMem(n: number): number {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
const mem = new Array(n + 1).fill(-1);
|
|
|
|
|
return dfs(n, mem);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="climbing_stairs_dfs_mem.dart"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
int dfs(int i, List<int> mem) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2) return i;
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1) return mem[i];
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
int climbingStairsDFSMem(int n) {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
List<int> mem = List.filled(n + 1, -1);
|
|
|
|
|
return dfs(n, mem);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="climbing_stairs_dfs_mem.rs"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
fn dfs(i: usize, mem: &mut [i32]) -> i32 {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if i == 1 || i == 2 {
|
|
|
|
|
return i as i32;
|
|
|
|
|
}
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if mem[i] != -1 {
|
|
|
|
|
return mem[i];
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
let count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
fn climbing_stairs_dfs_mem(n: usize) -> i32 {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
let mut mem = vec![-1; n + 1];
|
|
|
|
|
dfs(n, &mut mem)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="climbing_stairs_dfs_mem.c"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
int dfs(int i, int *mem) {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2)
|
|
|
|
|
return i;
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1)
|
|
|
|
|
return mem[i];
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
int climbingStairsDFSMem(int n) {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
int *mem = (int *)malloc((n + 1) * sizeof(int));
|
|
|
|
|
for (int i = 0; i <= n; i++) {
|
|
|
|
|
mem[i] = -1;
|
|
|
|
|
}
|
|
|
|
|
int result = dfs(n, mem);
|
|
|
|
|
free(mem);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title="climbing_stairs_dfs_mem.kt"
|
|
|
|
|
/* 記憶化搜尋 */
|
|
|
|
|
fun dfs(i: Int, mem: IntArray): Int {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 || i == 2) return i
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1) return mem[i]
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
val count = dfs(i - 1, mem) + dfs(i - 2, mem)
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count
|
|
|
|
|
return count
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 爬樓梯:記憶化搜尋 */
|
|
|
|
|
fun climbingStairsDFSMem(n: Int): Int {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
val mem = IntArray(n + 1)
|
|
|
|
|
mem.fill(-1)
|
|
|
|
|
return dfs(n, mem)
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Ruby"
|
|
|
|
|
|
|
|
|
|
```ruby title="climbing_stairs_dfs_mem.rb"
|
|
|
|
|
### 記憶化搜尋 ###
|
|
|
|
|
def dfs(i, mem)
|
|
|
|
|
# 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
return i if i == 1 || i == 2
|
|
|
|
|
# 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
return mem[i] if mem[i] != -1
|
|
|
|
|
|
|
|
|
|
# dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
count = dfs(i - 1, mem) + dfs(i - 2, mem)
|
|
|
|
|
# 記錄 dp[i]
|
|
|
|
|
mem[i] = count
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
### 爬樓梯:記憶化搜尋 ###
|
|
|
|
|
def climbing_stairs_dfs_mem(n)
|
|
|
|
|
# mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
mem = Array.new(n + 1, -1)
|
|
|
|
|
dfs(n, mem)
|
|
|
|
|
end
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="climbing_stairs_dfs_mem.zig"
|
|
|
|
|
// 記憶化搜尋
|
|
|
|
|
fn dfs(i: usize, mem: []i32) i32 {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (i == 1 or i == 2) {
|
|
|
|
|
return @intCast(i);
|
|
|
|
|
}
|
|
|
|
|
// 若存在記錄 dp[i] ,則直接返回之
|
|
|
|
|
if (mem[i] != -1) {
|
|
|
|
|
return mem[i];
|
|
|
|
|
}
|
|
|
|
|
// dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
var count = dfs(i - 1, mem) + dfs(i - 2, mem);
|
|
|
|
|
// 記錄 dp[i]
|
|
|
|
|
mem[i] = count;
|
|
|
|
|
return count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 爬樓梯:記憶化搜尋
|
|
|
|
|
fn climbingStairsDFSMem(comptime n: usize) i32 {
|
|
|
|
|
// mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
|
|
|
|
|
var mem = [_]i32{ -1 } ** (n + 1);
|
|
|
|
|
return dfs(n, &mem);
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
??? pythontutor "視覺化執行"
|
|
|
|
|
|
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int%2C%20mem%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E8%A8%98%E6%86%B6%E5%8C%96%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20%E8%8B%A5%E5%AD%98%E5%9C%A8%E8%A8%98%E9%8C%84%20dp%5Bi%5D%20%EF%BC%8C%E5%89%87%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20mem%5Bi%5D%20%21%3D%20-1%3A%0A%20%20%20%20%20%20%20%20return%20mem%5Bi%5D%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201%2C%20mem%29%20%2B%20dfs%28i%20-%202%2C%20mem%29%0A%20%20%20%20%23%20%E8%A8%98%E9%8C%84%20dp%5Bi%5D%0A%20%20%20%20mem%5Bi%5D%20%3D%20count%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs_mem%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E8%A8%98%E6%86%B6%E5%8C%96%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20%23%20mem%5Bi%5D%20%E8%A8%98%E9%8C%84%E7%88%AC%E5%88%B0%E7%AC%AC%20i%20%E9%9A%8E%E7%9A%84%E6%96%B9%E6%A1%88%E7%B8%BD%E6%95%B8%EF%BC%8C-1%20%E4%BB%A3%E8%A1%A8%E7%84%A1%E8%A8%98%E9%8C%84%0A%20%20%20%20mem%20%3D%20%5B-1%5D%20%2A%20%28n%20%2B%201%29%0A%20%20%20%20return%20dfs%28n%2C%20mem%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs_mem%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
|
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int%2C%20mem%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E8%A8%98%E6%86%B6%E5%8C%96%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20%E8%8B%A5%E5%AD%98%E5%9C%A8%E8%A8%98%E9%8C%84%20dp%5Bi%5D%20%EF%BC%8C%E5%89%87%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20mem%5Bi%5D%20%21%3D%20-1%3A%0A%20%20%20%20%20%20%20%20return%20mem%5Bi%5D%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201%2C%20mem%29%20%2B%20dfs%28i%20-%202%2C%20mem%29%0A%20%20%20%20%23%20%E8%A8%98%E9%8C%84%20dp%5Bi%5D%0A%20%20%20%20mem%5Bi%5D%20%3D%20count%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs_mem%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E8%A8%98%E6%86%B6%E5%8C%96%E6%90%9C%E5%B0%8B%22%22%22%0A%20%20%20%20%23%20mem%5Bi%5D%20%E8%A8%98%E9%8C%84%E7%88%AC%E5%88%B0%E7%AC%AC%20i%20%E9%9A%8E%E7%9A%84%E6%96%B9%E6%A1%88%E7%B8%BD%E6%95%B8%EF%BC%8C-1%20%E4%BB%A3%E8%A1%A8%E7%84%A1%E8%A8%98%E9%8C%84%0A%20%20%20%20mem%20%3D%20%5B-1%5D%20%2A%20%28n%20%2B%201%29%0A%20%20%20%20return%20dfs%28n%2C%20mem%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs_mem%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|
|
|
|
|
|
|
|
|
觀察圖 14-4 ,**經過記憶化處理後,所有重疊子問題都只需計算一次,時間複雜度最佳化至 $O(n)$** ,這是一個巨大的飛躍。
|
|
|
|
|
|
|
|
|
|
![記憶化搜尋對應遞迴樹](intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 圖 14-4 記憶化搜尋對應遞迴樹 </p>
|
|
|
|
|
|
|
|
|
|
## 14.1.3 方法三:動態規劃
|
|
|
|
|
|
|
|
|
|
**記憶化搜尋是一種“從頂至底”的方法**:我們從原問題(根節點)開始,遞迴地將較大子問題分解為較小子問題,直至解已知的最小子問題(葉節點)。之後,透過回溯逐層收集子問題的解,構建出原問題的解。
|
|
|
|
|
|
|
|
|
|
與之相反,**動態規劃是一種“從底至頂”的方法**:從最小子問題的解開始,迭代地構建更大子問題的解,直至得到原問題的解。
|
|
|
|
|
|
|
|
|
|
由於動態規劃不包含回溯過程,因此只需使用迴圈迭代實現,無須使用遞迴。在以下程式碼中,我們初始化一個陣列 `dp` 來儲存子問題的解,它起到了與記憶化搜尋中陣列 `mem` 相同的記錄作用:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="climbing_stairs_dp.py"
|
|
|
|
|
def climbing_stairs_dp(n: int) -> int:
|
|
|
|
|
"""爬樓梯:動態規劃"""
|
|
|
|
|
if n == 1 or n == 2:
|
|
|
|
|
return n
|
|
|
|
|
# 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
dp = [0] * (n + 1)
|
|
|
|
|
# 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1], dp[2] = 1, 2
|
|
|
|
|
# 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for i in range(3, n + 1):
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2]
|
|
|
|
|
return dp[n]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="climbing_stairs_dp.cpp"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
int climbingStairsDP(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
vector<int> dp(n + 1);
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
return dp[n];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="climbing_stairs_dp.java"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
int climbingStairsDP(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
int[] dp = new int[n + 1];
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
return dp[n];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="climbing_stairs_dp.cs"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
int ClimbingStairsDP(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
int[] dp = new int[n + 1];
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
return dp[n];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="climbing_stairs_dp.go"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
func climbingStairsDP(n int) int {
|
|
|
|
|
if n == 1 || n == 2 {
|
|
|
|
|
return n
|
|
|
|
|
}
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
dp := make([]int, n+1)
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1
|
|
|
|
|
dp[2] = 2
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for i := 3; i <= n; i++ {
|
|
|
|
|
dp[i] = dp[i-1] + dp[i-2]
|
|
|
|
|
}
|
|
|
|
|
return dp[n]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="climbing_stairs_dp.swift"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
func climbingStairsDP(n: Int) -> Int {
|
|
|
|
|
if n == 1 || n == 2 {
|
|
|
|
|
return n
|
|
|
|
|
}
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
var dp = Array(repeating: 0, count: n + 1)
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1
|
|
|
|
|
dp[2] = 2
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for i in 3 ... n {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2]
|
|
|
|
|
}
|
|
|
|
|
return dp[n]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="climbing_stairs_dp.js"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
function climbingStairsDP(n) {
|
|
|
|
|
if (n === 1 || n === 2) return n;
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
const dp = new Array(n + 1).fill(-1);
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (let i = 3; i <= n; i++) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
return dp[n];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="climbing_stairs_dp.ts"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
function climbingStairsDP(n: number): number {
|
|
|
|
|
if (n === 1 || n === 2) return n;
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
const dp = new Array(n + 1).fill(-1);
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (let i = 3; i <= n; i++) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
return dp[n];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="climbing_stairs_dp.dart"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
int climbingStairsDP(int n) {
|
|
|
|
|
if (n == 1 || n == 2) return n;
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
List<int> dp = List.filled(n + 1, 0);
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
return dp[n];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="climbing_stairs_dp.rs"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
fn climbing_stairs_dp(n: usize) -> i32 {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if n == 1 || n == 2 {
|
|
|
|
|
return n as i32;
|
|
|
|
|
}
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
let mut dp = vec![-1; n + 1];
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for i in 3..=n {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
dp[n]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="climbing_stairs_dp.c"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
int climbingStairsDP(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
int *dp = (int *)malloc((n + 1) * sizeof(int));
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
int result = dp[n];
|
|
|
|
|
free(dp);
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title="climbing_stairs_dp.kt"
|
|
|
|
|
/* 爬樓梯:動態規劃 */
|
|
|
|
|
fun climbingStairsDP(n: Int): Int {
|
|
|
|
|
if (n == 1 || n == 2) return n
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
val dp = IntArray(n + 1)
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1
|
|
|
|
|
dp[2] = 2
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (i in 3..n) {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2]
|
|
|
|
|
}
|
|
|
|
|
return dp[n]
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Ruby"
|
|
|
|
|
|
|
|
|
|
```ruby title="climbing_stairs_dp.rb"
|
|
|
|
|
### 爬樓梯:動態規劃 ###
|
|
|
|
|
def climbing_stairs_dp(n)
|
|
|
|
|
return n if n == 1 || n == 2
|
|
|
|
|
|
|
|
|
|
# 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
dp = Array.new(n + 1, 0)
|
|
|
|
|
# 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1], dp[2] = 1, 2
|
|
|
|
|
# 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
(3...(n + 1)).each { |i| dp[i] = dp[i - 1] + dp[i - 2] }
|
|
|
|
|
|
|
|
|
|
dp[n]
|
|
|
|
|
end
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="climbing_stairs_dp.zig"
|
|
|
|
|
// 爬樓梯:動態規劃
|
|
|
|
|
fn climbingStairsDP(comptime n: usize) i32 {
|
|
|
|
|
// 已知 dp[1] 和 dp[2] ,返回之
|
|
|
|
|
if (n == 1 or n == 2) {
|
|
|
|
|
return @intCast(n);
|
|
|
|
|
}
|
|
|
|
|
// 初始化 dp 表,用於儲存子問題的解
|
|
|
|
|
var dp = [_]i32{-1} ** (n + 1);
|
|
|
|
|
// 初始狀態:預設最小子問題的解
|
|
|
|
|
dp[1] = 1;
|
|
|
|
|
dp[2] = 2;
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for (3..n + 1) |i| {
|
|
|
|
|
dp[i] = dp[i - 1] + dp[i - 2];
|
|
|
|
|
}
|
|
|
|
|
return dp[n];
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
??? pythontutor "視覺化執行"
|
|
|
|
|
|
|
|
|
|
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_dp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E5%8B%95%E6%85%8B%E8%A6%8F%E5%8A%83%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E6%96%BC%E5%84%B2%E5%AD%98%E5%AD%90%E5%95%8F%E9%A1%8C%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B0%5D%20%2A%20%28n%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8B%80%E6%85%8B%EF%BC%9A%E9%A0%90%E8%A8%AD%E6%9C%80%E5%B0%8F%E5%AD%90%E5%95%8F%E9%A1%8C%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D%2C%20dp%5B2%5D%20%3D%201%2C%202%0A%20%20%20%20%23%20%E7%8B%80%E6%85%8B%E8%BD%89%E7%A7%BB%EF%BC%9A%E5%BE%9E%E8%BC%83%E5%B0%8F%E5%AD%90%E5%95%8F%E9%A1%8C%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BC%83%E5%A4%A7%E5%AD%90%E5%95%8F%E9%A1%8C%0A%20%20%20%20for%20i%20in%20range%283%2C%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%20%3D%20dp%5Bi%20-%201%5D%20%2B%20dp%5Bi%20-%202%5D%0A%20%20%20%20return%20dp%5Bn%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
|
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_dp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E5%8B%95%E6%85%8B%E8%A6%8F%E5%8A%83%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E6%96%BC%E5%84%B2%E5%AD%98%E5%AD%90%E5%95%8F%E9%A1%8C%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B0%5D%20%2A%20%28n%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8B%80%E6%85%8B%EF%BC%9A%E9%A0%90%E8%A8%AD%E6%9C%80%E5%B0%8F%E5%AD%90%E5%95%8F%E9%A1%8C%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D%2C%20dp%5B2%5D%20%3D%201%2C%202%0A%20%20%20%20%23%20%E7%8B%80%E6%85%8B%E8%BD%89%E7%A7%BB%EF%BC%9A%E5%BE%9E%E8%BC%83%E5%B0%8F%E5%AD%90%E5%95%8F%E9%A1%8C%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BC%83%E5%A4%A7%E5%AD%90%E5%95%8F%E9%A1%8C%0A%20%20%20%20for%20i%20in%20range%283%2C%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%20%3D%20dp%5Bi%20-%201%5D%20%2B%20dp%5Bi%20-%202%5D%0A%20%20%20%20return%20dp%5Bn%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|
|
|
|
|
|
|
|
|
圖 14-5 模擬了以上程式碼的執行過程。
|
|
|
|
|
|
|
|
|
|
![爬樓梯的動態規劃過程](intro_to_dynamic_programming.assets/climbing_stairs_dp.png){ class="animation-figure" }
|
|
|
|
|
|
|
|
|
|
<p align="center"> 圖 14-5 爬樓梯的動態規劃過程 </p>
|
|
|
|
|
|
|
|
|
|
與回溯演算法一樣,動態規劃也使用“狀態”概念來表示問題求解的特定階段,每個狀態都對應一個子問題以及相應的區域性最優解。例如,爬樓梯問題的狀態定義為當前所在樓梯階數 $i$ 。
|
|
|
|
|
|
|
|
|
|
根據以上內容,我們可以總結出動態規劃的常用術語。
|
|
|
|
|
|
|
|
|
|
- 將陣列 `dp` 稱為 <u>dp 表</u>,$dp[i]$ 表示狀態 $i$ 對應子問題的解。
|
|
|
|
|
- 將最小子問題對應的狀態(第 $1$ 階和第 $2$ 階樓梯)稱為<u>初始狀態</u>。
|
|
|
|
|
- 將遞推公式 $dp[i] = dp[i-1] + dp[i-2]$ 稱為<u>狀態轉移方程</u>。
|
|
|
|
|
|
|
|
|
|
## 14.1.4 空間最佳化
|
|
|
|
|
|
|
|
|
|
細心的讀者可能發現了,**由於 $dp[i]$ 只與 $dp[i-1]$ 和 $dp[i-2]$ 有關,因此我們無須使用一個陣列 `dp` 來儲存所有子問題的解**,而只需兩個變數滾動前進即可。程式碼如下所示:
|
|
|
|
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
```python title="climbing_stairs_dp.py"
|
|
|
|
|
def climbing_stairs_dp_comp(n: int) -> int:
|
|
|
|
|
"""爬樓梯:空間最佳化後的動態規劃"""
|
|
|
|
|
if n == 1 or n == 2:
|
|
|
|
|
return n
|
|
|
|
|
a, b = 1, 2
|
|
|
|
|
for _ in range(3, n + 1):
|
|
|
|
|
a, b = b, a + b
|
|
|
|
|
return b
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
|
|
|
|
```cpp title="climbing_stairs_dp.cpp"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
int climbingStairsDPComp(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
int a = 1, b = 2;
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
int tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
```java title="climbing_stairs_dp.java"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
int climbingStairsDPComp(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
int a = 1, b = 2;
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
int tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
|
|
|
|
```csharp title="climbing_stairs_dp.cs"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
int ClimbingStairsDPComp(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
int a = 1, b = 2;
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
int tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="climbing_stairs_dp.go"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
func climbingStairsDPComp(n int) int {
|
|
|
|
|
if n == 1 || n == 2 {
|
|
|
|
|
return n
|
|
|
|
|
}
|
|
|
|
|
a, b := 1, 2
|
|
|
|
|
// 狀態轉移:從較小子問題逐步求解較大子問題
|
|
|
|
|
for i := 3; i <= n; i++ {
|
|
|
|
|
a, b = b, a+b
|
|
|
|
|
}
|
|
|
|
|
return b
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
|
|
|
|
```swift title="climbing_stairs_dp.swift"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
func climbingStairsDPComp(n: Int) -> Int {
|
|
|
|
|
if n == 1 || n == 2 {
|
|
|
|
|
return n
|
|
|
|
|
}
|
|
|
|
|
var a = 1
|
|
|
|
|
var b = 2
|
|
|
|
|
for _ in 3 ... n {
|
|
|
|
|
(a, b) = (b, a + b)
|
|
|
|
|
}
|
|
|
|
|
return b
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "JS"
|
|
|
|
|
|
|
|
|
|
```javascript title="climbing_stairs_dp.js"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
function climbingStairsDPComp(n) {
|
|
|
|
|
if (n === 1 || n === 2) return n;
|
|
|
|
|
let a = 1,
|
|
|
|
|
b = 2;
|
|
|
|
|
for (let i = 3; i <= n; i++) {
|
|
|
|
|
const tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "TS"
|
|
|
|
|
|
|
|
|
|
```typescript title="climbing_stairs_dp.ts"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
function climbingStairsDPComp(n: number): number {
|
|
|
|
|
if (n === 1 || n === 2) return n;
|
|
|
|
|
let a = 1,
|
|
|
|
|
b = 2;
|
|
|
|
|
for (let i = 3; i <= n; i++) {
|
|
|
|
|
const tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Dart"
|
|
|
|
|
|
|
|
|
|
```dart title="climbing_stairs_dp.dart"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
int climbingStairsDPComp(int n) {
|
|
|
|
|
if (n == 1 || n == 2) return n;
|
|
|
|
|
int a = 1, b = 2;
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
int tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Rust"
|
|
|
|
|
|
|
|
|
|
```rust title="climbing_stairs_dp.rs"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
fn climbing_stairs_dp_comp(n: usize) -> i32 {
|
|
|
|
|
if n == 1 || n == 2 {
|
|
|
|
|
return n as i32;
|
|
|
|
|
}
|
|
|
|
|
let (mut a, mut b) = (1, 2);
|
|
|
|
|
for _ in 3..=n {
|
|
|
|
|
let tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
b
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
```c title="climbing_stairs_dp.c"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
int climbingStairsDPComp(int n) {
|
|
|
|
|
if (n == 1 || n == 2)
|
|
|
|
|
return n;
|
|
|
|
|
int a = 1, b = 2;
|
|
|
|
|
for (int i = 3; i <= n; i++) {
|
|
|
|
|
int tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Kotlin"
|
|
|
|
|
|
|
|
|
|
```kotlin title="climbing_stairs_dp.kt"
|
|
|
|
|
/* 爬樓梯:空間最佳化後的動態規劃 */
|
|
|
|
|
fun climbingStairsDPComp(n: Int): Int {
|
|
|
|
|
if (n == 1 || n == 2) return n
|
|
|
|
|
var a = 1
|
|
|
|
|
var b = 2
|
|
|
|
|
for (i in 3..n) {
|
|
|
|
|
val temp = b
|
|
|
|
|
b += a
|
|
|
|
|
a = temp
|
|
|
|
|
}
|
|
|
|
|
return b
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Ruby"
|
|
|
|
|
|
|
|
|
|
```ruby title="climbing_stairs_dp.rb"
|
|
|
|
|
### 爬樓梯:空間最佳化後的動態規劃 ###
|
|
|
|
|
def climbing_stairs_dp_comp(n)
|
|
|
|
|
return n if n == 1 || n == 2
|
|
|
|
|
|
|
|
|
|
a, b = 1, 2
|
|
|
|
|
(3...(n + 1)).each { a, b = b, a + b }
|
|
|
|
|
|
|
|
|
|
b
|
|
|
|
|
end
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
|
|
|
|
```zig title="climbing_stairs_dp.zig"
|
|
|
|
|
// 爬樓梯:空間最佳化後的動態規劃
|
|
|
|
|
fn climbingStairsDPComp(comptime n: usize) i32 {
|
|
|
|
|
if (n == 1 or n == 2) {
|
|
|
|
|
return @intCast(n);
|
|
|
|
|
}
|
|
|
|
|
var a: i32 = 1;
|
|
|
|
|
var b: i32 = 2;
|
|
|
|
|
for (3..n + 1) |_| {
|
|
|
|
|
var tmp = b;
|
|
|
|
|
b = a + b;
|
|
|
|
|
a = tmp;
|
|
|
|
|
}
|
|
|
|
|
return b;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
??? pythontutor "視覺化執行"
|
|
|
|
|
|
|
|
|
|
<div style="height: 477px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_dp_comp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E7%A9%BA%E9%96%93%E6%9C%80%E4%BD%B3%E5%8C%96%E5%BE%8C%E7%9A%84%E5%8B%95%E6%85%8B%E8%A6%8F%E5%8A%83%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20a%2C%20b%20%3D%201%2C%202%0A%20%20%20%20for%20_%20in%20range%283%2C%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20a%2C%20b%20%3D%20b%2C%20a%20%2B%20b%0A%20%20%20%20return%20b%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dp_comp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
|
|
|
|
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_dp_comp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A8%93%E6%A2%AF%EF%BC%9A%E7%A9%BA%E9%96%93%E6%9C%80%E4%BD%B3%E5%8C%96%E5%BE%8C%E7%9A%84%E5%8B%95%E6%85%8B%E8%A6%8F%E5%8A%83%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20a%2C%20b%20%3D%201%2C%202%0A%20%20%20%20for%20_%20in%20range%283%2C%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20a%2C%20b%20%3D%20b%2C%20a%20%2B%20b%0A%20%20%20%20return%20b%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dp_comp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%9A%8E%E6%A8%93%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A8%AE%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
|
|
|
|
|
|
|
|
|
觀察以上程式碼,由於省去了陣列 `dp` 佔用的空間,因此空間複雜度從 $O(n)$ 降至 $O(1)$ 。
|
|
|
|
|
|
|
|
|
|
在動態規劃問題中,當前狀態往往僅與前面有限個狀態有關,這時我們可以只保留必要的狀態,透過“降維”來節省記憶體空間。**這種空間最佳化技巧被稱為“滾動變數”或“滾動陣列”**。
|