diff --git a/docs/chapter_data_structure/number_encoding.md b/docs/chapter_data_structure/number_encoding.md
index b5f81bbef..012eefbf8 100644
--- a/docs/chapter_data_structure/number_encoding.md
+++ b/docs/chapter_data_structure/number_encoding.md
@@ -135,7 +135,7 @@ $$
**尽管浮点数 `float` 扩展了取值范围,但其副作用是牺牲了精度**。整数类型 `int` 将全部 32 比特用于表示数字,数字是均匀分布的;而由于指数位的存在,浮点数 `float` 的数值越大,相邻两个数字之间的差值就会趋向越大。
-如下表所示,指数位 $E = 0$ 和 $E = 255$ 具有特殊含义,**用于表示零、无穷大、$\mathrm{NaN}$ 等**。
+如下表所示,指数位 $\mathrm{E} = 0$ 和 $\mathrm{E} = 255$ 具有特殊含义,**用于表示零、无穷大、$\mathrm{NaN}$ 等**。
表 指数位含义
diff --git a/en/docs/chapter_data_structure/number_encoding.md b/en/docs/chapter_data_structure/number_encoding.md
index eb75cb6f2..c8b7366e3 100644
--- a/en/docs/chapter_data_structure/number_encoding.md
+++ b/en/docs/chapter_data_structure/number_encoding.md
@@ -135,7 +135,7 @@ Now we can answer the initial question: **The representation of `float` includes
**However, the trade-off for `float`'s expanded range is a sacrifice in precision**. The integer type `int` uses all 32 bits to represent the number, with values evenly distributed; but due to the exponent bit, the larger the value of a `float`, the greater the difference between adjacent numbers.
-As shown in the table below, exponent bits $E = 0$ and $E = 255$ have special meanings, **used to represent zero, infinity, $\mathrm{NaN}$, etc.**
+As shown in the table below, exponent bits $\mathrm{E} = 0$ and $\mathrm{E} = 255$ have special meanings, **used to represent zero, infinity, $\mathrm{NaN}$, etc.**
Table Meaning of exponent bits