@ -1,14 +1,13 @@
/**
/*
* File : tree_node . rs
* Created Time : 2023 - 02 - 27
* Author : xBLACKICEx ( xBLACKICE @ outlook . com )
* Author : xBLACKICEx ( xBLACKICE @ outlook . com ) , night - cruise ( 2586447362 @ qq . com )
* /
use std ::cell ::RefCell ;
use std ::collections ::VecDeque ;
use std ::rc ::Rc ;
#[ allow(dead_code) ]
/* 二叉树节点类型 */
#[ derive(Debug) ]
pub struct TreeNode {
pub val : i32 ,
@ -19,6 +18,7 @@ pub struct TreeNode {
}
impl TreeNode {
/* 构造方法 */
pub fn new ( val : i32 ) -> Rc < RefCell < Self > > {
Rc ::new ( RefCell ::new ( Self {
val ,
@ -39,63 +39,55 @@ macro_rules! op_vec {
} ;
}
/// This function takes a vector of integers and generates a binary tree from it in a level order traversal manner.
/// The first element of the vector is used as the root node of the tree. Each node in the tree is represented by a `TreeNode` struct that has a value and pointers to its left and right children.
///
/// # Arguments
///
/// * `list` - A vector of integers to be used to generate the binary tree.
///
/// # Returns
///
/// An `Option<Rc<RefCell<TreeNode>>>` where the `Option` is `None` if the vector is empty, and `Some` containing the root node of the tree otherwise.
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// use std::collections::VecDeque;
///
/// let list = vec![1, 2, 3, 4, 5, 6, 7];
/// let root = vec_to_tree(list).unwrap();
///
/// // The resulting tree looks like:
/// //
/// // 1
/// // / \
/// // 2 3
/// // / \ / \
/// // 4 56 7
/// ```
pub fn vec_to_tree ( list : Vec < Option < i32 > > ) -> Option < Rc < RefCell < TreeNode > > > {
if list . is_empty ( ) {
// 序列化编码规则请参考:
// https://www.hello-algo.com/chapter_tree/array_representation_of_tree/
// 二叉树的数组表示:
// [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
// 二叉树的链表表示:
// /——— 15
// /——— 7
// /——— 3
// | \——— 6
// | \——— 12
// ——— 1
// \——— 2
// | /——— 9
// \——— 4
// \——— 8
/* 将列表反序列化为二叉树:递归 */
fn vec_to_tree_dfs ( arr : & [ Option < i32 > ] , i : usize ) -> Option < Rc < RefCell < TreeNode > > > {
if i > = arr . len ( ) | | arr [ i ] . is_none ( ) {
return None ;
}
let root = TreeNode ::new ( arr [ i ] . unwrap ( ) ) ;
root . borrow_mut ( ) . left = vec_to_tree_dfs ( arr , 2 * i + 1 ) ;
root . borrow_mut ( ) . right = vec_to_tree_dfs ( arr , 2 * i + 2 ) ;
Some ( root )
}
let root = TreeNode ::new ( list [ 0 ] . unwrap ( ) ) ;
let mut que = VecDeque ::new ( ) ;
que . push_back ( Rc ::clone ( & root ) ) ;
let mut index = 0 ;
while let Some ( node ) = que . pop_front ( ) {
index + = 1 ;
if index > = list . len ( ) {
break ;
}
if let Some ( val ) = list [ index ] {
node . borrow_mut ( ) . left = Some ( TreeNode ::new ( val ) ) ;
que . push_back ( Rc ::clone ( & node . borrow ( ) . left . as_ref ( ) . unwrap ( ) ) ) ;
}
/* 将列表反序列化为二叉树 */
pub fn vec_to_tree ( arr : Vec < Option < i32 > > ) -> Option < Rc < RefCell < TreeNode > > > {
vec_to_tree_dfs ( & arr , 0 )
}
index + = 1 ;
if index > = list . len ( ) {
break ;
}
if let Some ( val ) = list [ index ] {
node . borrow_mut ( ) . right = Some ( TreeNode ::new ( val ) ) ;
que . push_back ( Rc ::clone ( & node . borrow ( ) . right . as_ref ( ) . unwrap ( ) ) ) ;
}
/* 将二叉树序列化为列表:递归 */
fn tree_to_vec_dfs ( root : Option < Rc < RefCell < TreeNode > > > , i : usize , res : & mut Vec < Option < i32 > > ) {
if root . is_none ( ) {
return ;
}
let root = root . unwrap ( ) ;
while i > = res . len ( ) {
res . push ( None ) ;
}
Some ( root )
}
res [ i ] = Some ( root . borrow ( ) . val ) ;
tree_to_vec_dfs ( root . borrow ( ) . left . clone ( ) , 2 * i + 1 , res ) ;
tree_to_vec_dfs ( root . borrow ( ) . right . clone ( ) , 2 * i + 2 , res ) ;
}
/* 将二叉树序列化为列表 */
pub fn tree_to_vec ( root : Option < Rc < RefCell < TreeNode > > > ) -> Vec < Option < i32 > > {
let mut res = vec! [ ] ;
tree_to_vec_dfs ( root , 0 , & mut res ) ;
res
}