Add the section of max product cutting problem. (#642)

pull/645/head
Yudong Jin 1 year ago committed by GitHub
parent ca5bde2b6c
commit 075c3abf88
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,39 @@
/**
* File: max_product_cutting.cpp
* Created Time: 2023-07-21
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 最大切分乘积:贪心 */
int maxProductCutting(int n) {
// 当 n <= 3 时,必须切分出一个 1
if (n <= 3) {
return 1 * (n - 1);
}
// 贪心地切分出 3 a 为 3 的个数b 为余数
int a = n / 3;
int b = n % 3;
if (b == 1) {
// 当余数为 1 时,将一对 1 * 3 转化为 2 * 2
return (int)pow(3, a - 1) * 2 * 2;
}
if (b == 2) {
// 当余数为 2 时,不做处理
return (int)pow(3, a) * 2;
}
// 当余数为 0 时,不做处理
return (int)pow(3, a);
}
/* Driver Code */
int main() {
int n = 58;
// 贪心算法
int res = maxProductCutting(n);
cout << "最大切分乘积为" << res << endl;
return 0;
}

@ -0,0 +1,40 @@
/**
* File: max_product_cutting.java
* Created Time: 2023-07-21
* Author: Krahets (krahets@163.com)
*/
package chapter_greedy;
import java.lang.Math;
public class max_product_cutting {
/* 最大切分乘积:贪心 */
public static int maxProductCutting(int n) {
// 当 n <= 3 时,必须切分出一个 1
if (n <= 3) {
return 1 * (n - 1);
}
// 贪心地切分出 3 a 为 3 的个数b 为余数
int a = n / 3;
int b = n % 3;
if (b == 1) {
// 当余数为 1 时,将一对 1 * 3 转化为 2 * 2
return (int) Math.pow(3, a - 1) * 2 * 2;
}
if (b == 2) {
// 当余数为 2 时,不做处理
return (int) Math.pow(3, a) * 2;
}
// 当余数为 0 时,不做处理
return (int) Math.pow(3, a);
}
public static void main(String[] args) {
int n = 58;
// 贪心算法
int res = maxProductCutting(n);
System.out.println("最大切分乘积为" + res);
}
}

@ -0,0 +1,33 @@
"""
File: max_product_cutting.py
Created Time: 2023-07-21
Author: Krahets (krahets@163.com)
"""
import math
def max_product_cutting(n: int) -> int:
"""最大切分乘积:贪心"""
# 当 n <= 3 时,必须切分出一个 1
if n <= 3:
return 1 * (n - 1)
# 贪心地切分出 3 a 为 3 的个数b 为余数
a, b = n // 3, n % 3
if b == 1:
# 当余数为 1 时,将一对 1 * 3 转化为 2 * 2
return int(math.pow(3, a - 1)) * 2 * 2
if b == 2:
# 当余数为 2 时,不做处理
return int(math.pow(3, a)) * 2
# 当余数为 0 时,不做处理
return int(math.pow(3, a))
"""Driver Code"""
if __name__ == "__main__":
n = 58
# 贪心算法
res = max_product_cutting(n)
print(f"最大切分乘积为 {res}")

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

@ -0,0 +1,149 @@
# 最大切分乘积问题
!!! question
给定一个正整数 $n$ ,将其切分为至少两个正整数的和,求切分后所有整数的乘积最大是多少。
### 第一步:问题分析
![最大切分乘积的问题定义](max_product_cutting_problem.assets/max_product_cutting_definition.png)
假设我们将 $n$ 切分为 $m$ 个整数因子,其中第 $i$ 个因子记为 $n_i$ ,即
$$
n = \sum_{i=1}^{m}n_i
$$
本题目标是求得所有整数因子的最大乘积,即
$$
\max(\prod_{i=1}^{m}n_i)
$$
我们需要思考的是:切分数量 $m$ 应该多大,每个 $n_i$ 应该是多少?
### 第二步:贪心策略确定
根据经验,两个整数的和往往比它们的积更小。假设从 $n$ 中分出一个因子 $2$ ,则它们的乘积为 $2(n-2)$ 。我们将该乘积与 $n$ 作比较:
$$
\begin{aligned}
2(n-2) & \geq n \newline
2n - n - 4 & \geq 0 \newline
n & \geq 4
\end{aligned}
$$
当 $n \geq 4$ 时,切分出一个 $2$ 后乘积会变大,这说明大于等于 $4$ 的整数都应该被切分。
**贪心策略一**:如果切分方案中包含 $\geq 4$ 的因子,那么它就应该被继续切分。最终的切分方案只应出现 $1$ , $2$ , $3$ 这三种因子。
![切分导致乘积变大](max_product_cutting_problem.assets/max_product_cutting_greedy_infer1.png)
接下来思考哪个因子是最优的。在 $1$ , $2$ , $3$ 这三个因子中,显然 $1$ 是最差的,因为 $1 \times (n-1) < n$ 恒成立,切分出 $1$ 会导致乘积减小。
我们发现,当 $n = 6$ 时,有 $3 \times 3 > 2 \times 2 \times 2$ 。**这意味着切分出 $3$ 比切分出 $2$ 更优**。
**贪心策略二**:在切分方案中,最多只应存在两个 $2$ 。因为三个 $2$ 可以被替换为两个 $3$ ,从而获得更大的乘积。
![最优切分因子](max_product_cutting_problem.assets/max_product_cutting_greedy_infer3.png)
总结以上,可推出贪心策略:
1. 输入整数 $n$ ,从其不断地切分出因子 $3$ ,直至余数为 $0$ , $1$ , $2$ 。
2. 当余数为 $0$ 时,代表 $n$ 是 $3$ 的倍数,因此不做任何处理。
3. 当余数为 $2$ 时,不继续划分,保留之。
4. 当余数为 $1$ 时,由于 $2 \times 2 > 1 \times 3$ ,因此应将最后一个 $3$ 替换为 $2$ 。
### 代码实现
在代码中,我们无需开启循环来切分,可以直接利用向下整除得到 $3$ 的个数 $a$ ,用取模运算得到余数 $b$ ,即:
$$
n = 3 a + b
$$
需要单独处理边界情况:当 $n \leq 3$ 时,必须拆分出一个 $1$ ,乘积为 $1 \times (n - 1)$ 。
=== "Java"
```java title="max_product_cutting.java"
[class]{max_product_cutting}-[func]{maxProductCutting}
```
=== "C++"
```cpp title="max_product_cutting.cpp"
[class]{}-[func]{maxProductCutting}
```
=== "Python"
```python title="max_product_cutting.py"
[class]{}-[func]{max_product_cutting}
```
=== "Go"
```go title="max_product_cutting.go"
[class]{}-[func]{maxProductCutting}
```
=== "JavaScript"
```javascript title="max_product_cutting.js"
[class]{}-[func]{maxProductCutting}
```
=== "TypeScript"
```typescript title="max_product_cutting.ts"
[class]{}-[func]{maxProductCutting}
```
=== "C"
```c title="max_product_cutting.c"
[class]{}-[func]{maxProductCutting}
```
=== "C#"
```csharp title="max_product_cutting.cs"
[class]{max_product_cutting}-[func]{maxProductCutting}
```
=== "Swift"
```swift title="max_product_cutting.swift"
[class]{}-[func]{maxProductCutting}
```
=== "Zig"
```zig title="max_product_cutting.zig"
[class]{}-[func]{maxProductCutting}
```
=== "Dart"
```dart title="max_product_cutting.dart"
[class]{}-[func]{maxProductCutting}
```
![最大切分乘积的计算方法](max_product_cutting_problem.assets/max_product_cutting_greedy_calculation.png)
**时间复杂度取决于编程语言的幂运算的实现方法**。以 Python 为例,常用的幂计算函数有三种:
- 运算符 `**` 和函数 `pow()` 的时间复杂度均为 $O(\log a)$
- 函数 `math.pow()` 内部调用 C 语言库的 `pow()` 函数,其执行浮点取幂,时间复杂度为 $O(1)$ 。
变量 $a$ , $b$ 使用常数大小的额外空间,**因此空间复杂度为 $O(1)$** 。
### 第三步:正确性证明
使用反证法,只分析 $n \geq 3$ 的情况。
1. **所有因子 $\leq 3$** :假设最优切分方案中存在 $\geq 4$ 的因子 $x$ ,那么一定可以将其继续划分为 $2(x-2)$ ,从而获得更大的乘积。这与假设矛盾。
2. **切分方案不包含 $1$** :假设最优切分方案中存在一个因子 $1$ ,那么它一定可以合并入另外一个因子中,以获取更大乘积。这与假设矛盾。
3. **切分方案最多包含两个 $2$** :假设最优切分方案中包含三个 $2$ ,那么一定可以替换为两个 $3$ ,乘积更大。这与假设矛盾。

@ -271,6 +271,8 @@ nav:
- 15.2. &nbsp; 分数背包问题: chapter_greedy/fractional_knapsack_problem.md - 15.2. &nbsp; 分数背包问题: chapter_greedy/fractional_knapsack_problem.md
# [status: new] # [status: new]
- 15.3. &nbsp; 最大容量问题: chapter_greedy/max_capacity_problem.md - 15.3. &nbsp; 最大容量问题: chapter_greedy/max_capacity_problem.md
# [status: new]
- 15.4. &nbsp; 最大切分乘积问题: chapter_greedy/max_product_cutting_problem.md
- 16. &nbsp; 附录: - 16. &nbsp; 附录:
# [icon: material/help-circle-outline] # [icon: material/help-circle-outline]
- chapter_appendix/index.md - chapter_appendix/index.md

Loading…
Cancel
Save