Polish the sections of binary search.

pull/513/head
krahets 2 years ago
parent 24d90931e3
commit 081b76d620

@ -2,25 +2,21 @@
「二分查找 Binary Search」是一种基于分治思想的高效搜索算法。它利用数据的有序性每轮减少一半搜索范围直至找到目标元素或搜索区间为空为止。
我们先来求解一个简单的二分查找问题。
!!! question
给定一个长度为 $n$ 的有序数组 `nums` ,元素按从小到大的顺序排列。请查找并返回元素 `target` 在该数组中的索引。若数组不包含该元素,则返回 $-1$ 。数组中不包含重复元素。
给定一个长度为 $n$ 的数组 `nums` ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 `target` 在该数组中的索引。若数组不包含该元素,则返回 $-1$ 。
该数组的索引范围可以使用区间 $[0, n - 1]$ 来表示。其中,**中括号表示“闭区间”,即包含边界值本身**。在该表示下,区间 $[i, j]$ 在 $i = j$ 时仍包含一个元素,在 $i > j$ 时为空区间
对于上述问题,我们先初始化指针 $i = 0$ 和 $j = n - 1$ ,分别指向数组首元素和尾元素,代表搜索区间 $[0, n - 1]$ 。其中,中括号表示“闭区间”,即包含边界值本身。
接下来,我们基于上述区间定义实现二分查找。先初始化指针 $i = 0$ 和 $j = n - 1$ ,分别指向数组首元素和尾元素。之后循环执行以下两个步骤:
接下来,循环执行以下两个步骤:
1. 计算中点索引 $m = \lfloor {(i + j) / 2} \rfloor$ ,其中 $\lfloor \space \rfloor$ 表示向下取整操作。
2. 根据 `nums[m]``target` 缩小搜索区间,分为三种情况:
2. 判断 `nums[m]``target` 的大小关系,分为三种情况:
1. 当 `nums[m] < target` 时,说明 `target` 在区间 $[m + 1, j]$ 中,因此执行 $i = m + 1$
2. 当 `nums[m] > target` 时,说明 `target` 在区间 $[i, m - 1]$ 中,因此执行 $j = m - 1$
3. 当 `nums[m] = target` 时,说明找到目标元素,直接返回索引 $m$ 即可;
**若数组不包含目标元素,搜索区间最终会缩小为空**,即达到 $i > j$ 。此时,终止循环并返回 $-1$ 即可。
3. 当 `nums[m] = target` 时,说明找到 `target` ,因此返回索引 $m$
如下图所示,为了更清晰地表示区间,我们以折线图的形式表示数组
若数组不包含目标元素,搜索区间最终会缩小为空。此时返回 $-1$ 。
=== "<0>"
![二分查找步骤](binary_search.assets/binary_search_step0.png)
@ -46,7 +42,7 @@
=== "<7>"
![binary_search_step7](binary_search.assets/binary_search_step7.png)
值得注意的是,**当数组长度 $n$ 很大时,加法 $i + j$ 的结果可能会超出 `int` 类型的取值范围**。为了避免大数越界,我们通常采用公式 $m = \lfloor {i + (j - i) / 2} \rfloor$ 来计算中点。
值得注意的是,由于 $i$ 和 $j$ 都是 `int` 类型,**因此 $i + j$ 可能会超出 `int` 类型的取值范围**。为了避免大数越界,我们通常采用公式 $m = \lfloor {i + (j - i) / 2} \rfloor$ 来计算中点。
=== "Java"
@ -188,11 +184,11 @@
二分查找在时间和空间方面都有较好的性能:
- **二分查找的时间效率高**。在大数据量下,对数阶的时间复杂度具有显著优势。例如,当数据大小 $n = 2^{20}$ 时,线性查找需要 $2^{20} = 1048576$ 轮循环,而二分查找仅需 $\log_2 2^{20} = 20$ 轮循环。
- **二分查找无需额外空间**。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。
- 二分查找的时间效率高。在大数据量下,对数阶的时间复杂度具有显著优势。例如,当数据大小 $n = 2^{20}$ 时,线性查找需要 $2^{20} = 1048576$ 轮循环,而二分查找仅需 $\log_2 2^{20} = 20$ 轮循环。
- 二分查找无需额外空间。相较于需要借助额外空间的搜索算法(例如哈希查找),二分查找更加节省空间。
然而,二分查找并非适用于所有情况,原因如下:
- **二分查找仅适用于有序数据**。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 $O(n \log n)$ ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。
- **二分查找仅适用于数组**。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
- **小数据量下,线性查找性能更佳**。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 $n$ 较小时,线性查找反而比二分查找更快。
- 二分查找仅适用于有序数据。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 $O(n \log n)$ ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。
- 二分查找仅适用于数组。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
- 小数据量下,线性查找性能更佳。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 $n$ 较小时,线性查找反而比二分查找更快。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

After

Width:  |  Height:  |  Size: 78 KiB

@ -2,28 +2,32 @@
上一节规定目标元素在数组中是唯一的。如果目标元素在数组中多次出现,上节介绍的方法只能保证返回其中一个目标元素的索引,**而无法确定该索引的左边和右边还有多少目标元素**。
为了查找最左一个 `target` ,我们可以先进行二分查找,找到任意一个目标元素,**再加一个向左遍历的线性查找**,找到最左的 `target` 返回即可。然而,由于加入了线性查找,这个方法的时间复杂度可能会劣化至 $O(n)$ 。
!!! question
![线性查找最左元素](binary_search_edge.assets/binary_search_left_edge_naive.png)
给定一个长度为 $n$ 的有序数组 `nums` ,数组可能包含重复元素。请查找并返回元素 `target` 在数组中首次出现的索引。若数组中不包含该元素,则返回 $-1$ 。
## 查找最左一个元素
## 简单方法
!!! question
为了查找数组中最左边的 `target` ,我们可以分为两步:
1. 进行二分查找,定位到任意一个 `target` 的索引,记为 $k$
2. 以索引 $k$ 为起始点,向左进行线性遍历,找到最左边的 `target` 返回即可。
![线性查找最左边的元素](binary_search_edge.assets/binary_search_left_edge_naive.png)
给定一个长度为 $n$ 的有序数组 `nums` 。请查找并返回元素 `target` 在该数组中首次出现的索引。若数组中不包含该元素,则返回 $-1$ 。数组可能包含重复元素。
这个方法虽然有效,但由于包含线性查找,**其时间复杂度可能会劣化至 $O(n)$**
实际上,我们可以仅通过二分查找解决以上问题。方法的整体框架不变,先计算中点索引 `m` ,再判断 `target``nums[m]` 大小关系:
## 二分方法
- 当 `nums[m] < target``nums[m] > target` 时,说明还没有找到 `target` ,因此采取与上节代码相同的缩小区间操作。
- 当 `nums[m] == target` 时,说明找到了一个目标元素,此时应该如何缩小区间?
实际上,我们可以仅通过二分查找解决以上问题。整体算法流程不变,先计算中点索引 $m$ ,再判断 `target``nums[m]` 大小关系:
对于该情况,**我们可以将查找目标想象为 `leftarget`**,其中 `leftarget` 表示从右到左首个小于 `target` 的元素。具体来说:
- 当 `nums[m] < target``nums[m] > target` 时,说明还没有找到 `target` ,因此采取与上节代码相同的缩小区间操作,**从而使指针 $i$ 和 $j$ 向 `target` 靠近**。
- 当 `nums[m] == target` 时,说明“小于 `target` 的元素”在区间 $[i, m - 1]$ 中,因此采用 $j = m - 1$ 来缩小区间,**从而使指针 $j$ 向小于 `target` 的元素靠近**。
- 当 `nums[m] == target` 时,说明 `leftarget` 在区间 `[i, m - 1]` 中,因此采用 `j = m - 1` 来缩小区间,**从而使指针 `j``leftarget` 收缩靠近**。
- 二分查找完成后,`i` 指向最左一个 `target` `j` 指向 `leftarget` ,因此最终返回索引 `i` 即可。
二分查找完成后,**$i$ 指向最左边的 `target` $j$ 指向首个小于 `target` 的元素**,因此返回索引 $i$ 即可。
=== "<1>"
![二分查找最左元素的步骤](binary_search_edge.assets/binary_search_left_edge_step1.png)
![二分查找最左元素的步骤](binary_search_edge.assets/binary_search_left_edge_step1.png)
=== "<2>"
![binary_search_left_edge_step2](binary_search_edge.assets/binary_search_left_edge_step2.png)
@ -46,7 +50,7 @@
=== "<8>"
![binary_search_left_edge_step8](binary_search_edge.assets/binary_search_left_edge_step8.png)
注意,数组可能不包含目标元素 `target` 。因此在函数返回前,我们需要先判断 `nums[i]``target` 是否相等。另外,当 `target` 大于数组中的所有元素时,索引 `i` 会越界,因此也需要额外判断
注意,数组可能不包含目标元素 `target` 。因此在函数返回前,我们需要先判断 `nums[i]``target` 是否相等,以及索引 $i$ 是否越界
=== "Java"
@ -108,12 +112,11 @@
[class]{}-[func]{binarySearchLeftEdge}
```
## 查找最右一个元素
## 查找右边界
类似地,我们也可以二分查找最右一个元素。设首个大于 `target` 的元素为 `rightarget`
类似地,我们也可以二分查找最右边的 `target` 。当 `nums[m] == target` 时,说明大于 `target` 的元素在区间 $[m + 1, j]$ 中,因此执行 `i = m + 1` **使得指针 $i$ 向大于 `target` 的元素靠近**
- 当 `nums[m] == target` 时,说明 `rightarget` 在区间 `[m + 1, j]` 中,因此执行 `i = m + 1` 将搜索区间向右收缩。
- 完成二分后,`i` 指向 `rightarget` `j` 指向最右一个 `target` ,因此最终返回索引 `j` 即可。
完成二分后,**$i$ 指向首个大于 `target` 的元素,$j$ 指向最右边的 `target`** ,因此返回索引 $j$ 即可。
=== "Java"
@ -175,9 +178,9 @@
[class]{}-[func]{binarySearchRightEdge}
```
观察下图,搜索最右元素时指针 `j` 起到了搜索最左元素时指针 `i` 的作用,反之亦然。本质上看,**搜索最左元素和最右元素的实现是镜像对称的**。
观察下图,搜索最右边元素时指针 $j$ 的作用与搜索最左边元素时指针 $i$ 的作用一致,反之亦然。也就是说,**搜索最左边元素和最右边元素的实现是镜像对称的**。
![二分查找最左元素和最右元素](binary_search_edge.assets/binary_search_left_right_edge.png)
![查找最左边和最右边元素的对称性](binary_search_edge.assets/binary_search_left_right_edge.png)
!!! tip

Loading…
Cancel
Save