|
|
|
@ -365,9 +365,9 @@ $$
|
|
|
|
|
|
|
|
|
|
**时间复杂度可以有效评估算法效率。** 算法 `B` 运行时间的增长是线性的,在 $n > 1$ 时慢于算法 `A` ,在 $n > 1000000$ 时慢于算法 `C` 。实质上,只要输入数据大小 $n$ 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这也正是时间增长趋势的含义。
|
|
|
|
|
|
|
|
|
|
**时间复杂度分析将统计「计算操作的运行时间」简化为统计「计算操作的数量」。** 这是因为,无论是运行平台、还是计算操作类型,都与算法运行时间的增长趋势无关。因此,我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”。
|
|
|
|
|
**时间复杂度的推算方法更加简便。** 在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而,我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算难度。
|
|
|
|
|
|
|
|
|
|
**时间复杂度也存在一定的局限性。** 比如,虽然算法 `A` 和 `C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B` 比 `C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。即使存在这些问题,计算复杂度仍然是评判算法效率的最有效、最常用方法。
|
|
|
|
|
**时间复杂度也存在一定的局限性。** 比如,虽然算法 `A` 和 `C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B` 比 `C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,计算复杂度仍然是评判算法效率的最有效且常用的方法。
|
|
|
|
|
|
|
|
|
|
## 函数渐近上界
|
|
|
|
|
|
|
|
|
|