|
|
|
@ -29,17 +29,7 @@
|
|
|
|
|
|
|
|
|
|
![分数背包的贪心策略](fractional_knapsack_problem.assets/fractional_knapsack_greedy_strategy.png)
|
|
|
|
|
|
|
|
|
|
**第三步:正确性证明**
|
|
|
|
|
|
|
|
|
|
采用反证法。假设物品 $x$ 是单位价值最高的物品,使用某算法求得最大价值为 $res$ ,但该解中不包含物品 $x$ 。
|
|
|
|
|
|
|
|
|
|
现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 $x$ 。由于物品 $x$ 的单位价值最高,因此替换后的总价值一定大于 $res$ 。**这与 $res$ 是最优解矛盾,说明最优解中必须包含物品 $x$ 。**
|
|
|
|
|
|
|
|
|
|
对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,**单位价值更大的物品总是更优选择**,这说明贪心策略是有效的。
|
|
|
|
|
|
|
|
|
|
**实现代码**
|
|
|
|
|
|
|
|
|
|
我们构建了一个物品类 `Item` ,以便将物品按照单位价值进行排序。在循环贪心选择中,分为放入整个物品或放入部分物品两种情况。当背包已满时,则跳出循环并返回解。
|
|
|
|
|
我们构建了一个物品类 `Item` ,以便将物品按照单位价值进行排序。循环进行贪心选择,当背包已满时跳出并返回解。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -129,8 +119,16 @@
|
|
|
|
|
[class]{}-[func]{fractionalKnapsack}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
如下图所示,如果将一个 2D 图表的横轴和纵轴分别看作物品重量和物品单位价值,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度清晰地看到贪心策略的有效性。
|
|
|
|
|
最差情况下,需要遍历整个物品列表,**因此时间复杂度为 $O(n)$** ,其中 $n$ 为物品数量。由于初始化了一个 `Item` 对象列表,**因此空间复杂度为 $O(n)$** 。
|
|
|
|
|
|
|
|
|
|
![分数背包问题的几何表示](fractional_knapsack_problem.assets/fractional_knapsack_area_chart.png)
|
|
|
|
|
**第三步:正确性证明**
|
|
|
|
|
|
|
|
|
|
最差情况下,需要遍历整个物品列表,**因此时间复杂度为 $O(n)$** ,其中 $n$ 为物品数量。由于初始化了一个 `Item` 对象列表,**因此空间复杂度为 $O(n)$** 。
|
|
|
|
|
采用反证法。假设物品 $x$ 是单位价值最高的物品,使用某算法求得最大价值为 $res$ ,但该解中不包含物品 $x$ 。
|
|
|
|
|
|
|
|
|
|
现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 $x$ 。由于物品 $x$ 的单位价值最高,因此替换后的总价值一定大于 $res$ 。**这与 $res$ 是最优解矛盾,说明最优解中必须包含物品 $x$ 。**
|
|
|
|
|
|
|
|
|
|
对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,**单位价值更大的物品总是更优选择**,这说明贪心策略是有效的。
|
|
|
|
|
|
|
|
|
|
如下图所示,如果将物品重量和物品单位价值分别看作一个 2D 图表的横轴和纵轴,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度清晰地看到贪心策略的有效性。
|
|
|
|
|
|
|
|
|
|
![分数背包问题的几何表示](fractional_knapsack_problem.assets/fractional_knapsack_area_chart.png)
|
|
|
|
|