Add the Python codes for the chapter of Graph and Heap (#382)

pull/383/head
Yudong Jin 2 years ago committed by GitHub
parent 776f2d82bb
commit 1f4dba4845
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,6 +1,6 @@
/**
* File: TreeNode.java
* Created Time: 2022-11-25
* File: Vertex.java
* Created Time: 2023-02-15
* Author: Krahets (krahets@163.com)
*/

@ -0,0 +1,104 @@
"""
File: graph_adjacency_list.py
Created Time: 2023-02-23
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 基于邻接表实现的无向图类 """
class GraphAdjList:
# 邻接表key: 顶点value该顶点的所有邻接结点
adj_list = {}
""" 构造方法 """
def __init__(self, edges: List[List[Vertex]]) -> None:
self.adj_list = {}
# 添加所有顶点和边
for edge in edges:
self.add_vertex(edge[0])
self.add_vertex(edge[1])
self.add_edge(edge[0], edge[1])
""" 获取顶点数量 """
def size(self) -> int:
return len(self.adj_list)
""" 添加边 """
def add_edge(self, vet1: Vertex, vet2: Vertex) -> None:
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
raise ValueError
# 添加边 vet1 - vet2
self.adj_list[vet1].append(vet2)
self.adj_list[vet2].append(vet1)
""" 删除边 """
def remove_edge(self, vet1: Vertex, vet2: Vertex) -> None:
if vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:
raise ValueError
# 删除边 vet1 - vet2
self.adj_list[vet1].remove(vet2)
self.adj_list[vet2].remove(vet1)
""" 添加顶点 """
def add_vertex(self, vet: Vertex) -> None:
if vet in self.adj_list:
return
# 在邻接表中添加一个新链表
self.adj_list[vet] = []
""" 删除顶点 """
def remove_vertex(self, vet: Vertex) -> None:
if vet not in self.adj_list:
raise ValueError
# 在邻接表中删除顶点 vet 对应的链表
self.adj_list.pop(vet)
# 遍历其它顶点的链表,删除所有包含 vet 的边
for vertex in self.adj_list:
if vet in self.adj_list[vertex]:
self.adj_list[vertex].remove(vet)
""" 打印邻接表 """
def print(self) -> None:
print("邻接表 =")
for vertex in self.adj_list:
tmp = [v.val for v in self.adj_list[vertex]]
print(f"{vertex.val}: {tmp},")
""" Driver Code """
if __name__ == "__main__":
""" 初始化无向图 """
v = vals_to_vets([1, 3, 2, 5, 4])
edges = [[v[0], v[1]], [v[0], v[3]], [v[1], v[2]],
[v[2], v[3]], [v[2], v[4]], [v[3], v[4]]]
graph = GraphAdjList(edges)
print("\n初始化后,图为")
graph.print()
""" 添加边 """
# 顶点 1, 2 即 v[0], v[2]
graph.add_edge(v[0], v[2])
print("\n添加边 1-2 后,图为")
graph.print()
""" 删除边 """
# 顶点 1, 3 即 v[0], v[1]
graph.remove_edge(v[0], v[1])
print("\n删除边 1-3 后,图为")
graph.print()
""" 添加顶点 """
v5 = Vertex(6)
graph.add_vertex(v5)
print("\n添加顶点 6 后,图为")
graph.print()
""" 删除顶点 """
# 顶点 3 即 v[1]
graph.remove_vertex(v[1])
print("\n删除顶点 3 后,图为")
graph.print()

@ -0,0 +1,116 @@
"""
File: graph_adjacency_matrix.py
Created Time: 2023-02-23
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 基于邻接矩阵实现的无向图类 """
class GraphAdjMat:
# 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
vertices = []
# 邻接矩阵,行列索引对应“顶点索引”
adj_mat = []
""" 构造方法 """
def __init__(self, vertices, edges):
self.vertices = []
self.adj_mat = []
# 添加顶点
for val in vertices:
self.add_vertex(val)
# 添加边
# 请注意edges 元素代表顶点索引,即对应 vertices 元素索引
for e in edges:
self.add_edge(e[0], e[1])
""" 获取顶点数量 """
def size(self):
return len(self.vertices)
""" 添加顶点 """
def add_vertex(self, val):
n = self.size()
# 向顶点列表中添加新顶点的值
self.vertices.append(val)
# 在邻接矩阵中添加一行
new_row = [0]*n
self.adj_mat.append(new_row)
# 在邻接矩阵中添加一列
for row in self.adj_mat:
row.append(0)
""" 删除顶点 """
def remove_vertex(self, index):
if index >= self.size():
raise IndexError()
# 在顶点列表中移除索引 index 的顶点
self.vertices.pop(index)
# 在邻接矩阵中删除索引 index 的行
self.adj_mat.pop(index)
# 在邻接矩阵中删除索引 index 的列
for row in self.adj_mat:
row.pop(index)
""" 添加边 """
# 参数 i, j 对应 vertices 元素索引
def add_edge(self, i, j):
# 索引越界与相等处理
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
raise IndexError()
# 在无向图中,邻接矩阵沿主对角线对称,即满足 (i, j) == (j, i)
self.adj_mat[i][j] = 1
self.adj_mat[j][i] = 1
""" 删除边 """
# 参数 i, j 对应 vertices 元素索引
def remove_edge(self, i, j):
# 索引越界与相等处理
if i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:
raise IndexError()
self.adj_mat[i][j] = 0
self.adj_mat[j][i] = 0
# 打印邻接矩阵
def print(self):
print("顶点列表 =", self.vertices)
print("邻接矩阵 =")
print_matrix(self.adj_mat)
""" Driver Code """
if __name__ == "__main__":
""" 初始化无向图 """
# 请注意edges 元素代表顶点索引,即对应 vertices 元素索引
vertices = [1, 3, 2, 5, 4]
edges = [[0, 1], [0, 3], [1, 2], [2, 3], [2, 4], [3, 4]]
graph = GraphAdjMat(vertices, edges)
print("\n初始化后,图为")
graph.print()
""" 添加边 """
# 顶点 1, 2 的索引分别为 0, 2
graph.add_edge(0, 2)
print("\n添加边 1-2 后,图为")
graph.print()
""" 删除边 """
# 顶点 1, 3 的索引分别为 0, 1
graph.remove_edge(0, 1)
print("\n删除边 1-3 后,图为")
graph.print()
""" 添加顶点 """
graph.add_vertex(6)
print("\n添加顶点 6 后,图为")
graph.print()
""" 删除顶点 """
# 顶点 3 的索引为 1
graph.remove_vertex(1)
print("\n删除顶点 3 后,图为")
graph.print()

@ -0,0 +1,48 @@
"""
File: graph_bfs.py
Created Time: 2023-02-23
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
from graph_adjacency_list import GraphAdjList
""" 广度优先遍历 BFS """
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> List[Vertex]:
# 顶点遍历序列
res = []
# 哈希表,用于记录已被访问过的顶点
visited = set([start_vet])
# 队列用于实现 BFS
que = collections.deque([start_vet])
# 以顶点 vet 为起点,循环直至访问完所有顶点
while len(que) > 0:
vet = que.popleft() # 队首顶点出队
res.append(vet) # 记录访问顶点
# 遍历该顶点的所有邻接顶点
for adj_vet in graph.adj_list[vet]:
if adj_vet in visited:
continue # 跳过已被访问过的顶点
que.append(adj_vet) # 只入队未访问的顶点
visited.add(adj_vet) # 标记该顶点已被访问
# 返回顶点遍历序列
return res
if __name__ == "__main__":
"""初始化无向图"""
v = vals_to_vets([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
edges = [[v[0], v[1]], [v[0], v[3]], [v[1], v[2]], [v[1], v[4]],
[v[2], v[5]], [v[3], v[4]], [v[3], v[6]], [v[4], v[5]],
[v[4], v[7]], [v[5], v[8]], [v[6], v[7]], [v[7], v[8]]]
graph = GraphAdjList(edges)
print("\n初始化后,图为")
graph.print()
"""广度优先遍历 BFS"""
res = graph_bfs(graph, v[0])
print("\n广度优先遍历BFS顶点序列为")
print(vets_to_vals(res))

@ -0,0 +1,48 @@
"""
File: graph_dfs.py
Created Time: 2023-02-23
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
from graph_adjacency_list import GraphAdjList
""" 深度优先遍历 DFS 辅助函数 """
def dfs(graph: GraphAdjList, visited: Set[Vertex], res: List[Vertex], vet: Vertex):
res.append(vet) # 记录访问顶点
visited.add(vet) # 标记该顶点已被访问
# 遍历该顶点的所有邻接顶点
for adjVet in graph.adj_list[vet]:
if adjVet in visited:
continue # 跳过已被访问过的顶点
# 递归访问邻接顶点
dfs(graph, visited, res, adjVet)
""" 深度优先遍历 DFS """
# 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> List[Vertex]:
# 顶点遍历序列
res = []
# 哈希表,用于记录已被访问过的顶点
visited = set()
dfs(graph, visited, res, start_vet)
return res
""" Driver Code """
if __name__ == "__main__":
# 初始化无向图
v = vals_to_vets([0, 1, 2, 3, 4, 5, 6])
edges = [[v[0], v[1]], [v[0], v[3]], [v[1], v[2]],
[v[2], v[5]], [v[4], v[5]], [v[5], v[6]]]
graph = GraphAdjList(edges)
print("\n初始化后,图为")
graph.print()
# 深度优先遍历 BFS
res = graph_dfs(graph, v[0])
print("\n深度优先遍历DFS顶点序列为")
print(vets_to_vals(res))

@ -0,0 +1,62 @@
"""
File: heap.py
Created Time: 2023-02-23
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
def test_push(heap, val, flag=1):
heapq.heappush(heap, flag * val) # 元素入堆
print(f"\n元素 {val} 入堆后")
print_heap([flag * val for val in heap])
def test_pop(heap, flag=1):
val = flag * heapq.heappop(heap) # 堆顶元素出堆
print(f"\n堆顶元素 {val} 出堆后")
print_heap([flag * val for val in heap])
if __name__ == "__main__":
# 初始化小顶堆
min_heap, flag = [], 1
# 初始化大顶堆
max_heap, flag = [], -1
print("\n以下测试样例为大顶堆")
# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中flag = 1 时对应小顶堆flag = -1 时对应大顶堆
""" 元素入堆 """
test_push(max_heap, 1, flag)
test_push(max_heap, 3, flag)
test_push(max_heap, 2, flag)
test_push(max_heap, 5, flag)
test_push(max_heap, 4, flag)
""" 获取堆顶元素 """
peek = flag * max_heap[0]
print(f"\n堆顶元素为 {peek}")
""" 堆顶元素出堆 """
test_pop(max_heap, flag)
test_pop(max_heap, flag)
test_pop(max_heap, flag)
test_pop(max_heap, flag)
test_pop(max_heap, flag)
""" 获取堆大小 """
size = len(max_heap)
print(f"\n堆元素数量为 {size}")
""" 判断堆是否为空 """
is_empty = not max_heap
print(f"\n堆是否为空 {is_empty}")
""" 输入列表并建堆 """
# 时间复杂度为 O(n) ,而非 O(nlogn)
min_heap = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)
print("\n输入列表并建立小顶堆后")
print_heap(min_heap)

@ -0,0 +1,144 @@
"""
File: my_heap.py
Created Time: 2023-02-23
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
# 大顶堆
class MaxHeap:
# 使用列表而非数组,这样无需考虑扩容问题
def __init__(self, nums: List[int]):
# 将列表元素原封不动添加进堆
self.max_heap = nums
# 堆化除叶结点以外的其他所有结点
for i in range(self.parent(self.size() - 1), -1, -1):
self.sift_down(i)
# 获取左子结点索引
def left(self, i: int) -> int:
return 2 * i + 1
# 获取右子结点索引
def right(self, i: int) -> int:
return 2 * i + 2
# 获取父结点索引
def parent(self, i: int) -> int:
return (i - 1) // 2 # 向下整除
# 交换元素
def swap(self, i: int, j: int):
a, b = self.max_heap[i], self.max_heap[j]
self.max_heap[i], self.max_heap[j] = b, a
# 获取堆大小
def size(self) -> int:
return len(self.max_heap)
# 判断堆是否为空
def is_empty(self) -> bool:
return self.size() == 0
# 访问堆顶元素
def peek(self) -> int:
return self.max_heap[0]
# 元素入堆
def push(self, val: int):
# 添加结点
self.max_heap.append(val)
# 从底至顶堆化
self.sift_up(self.size() - 1)
# 从结点 i 开始,从底至顶堆化
def sift_up(self, i: int):
while True:
# 获取结点 i 的父结点
p = self.parent(i)
# 当“越过根结点”或“结点无需修复”时,结束堆化
if p < 0 or self.max_heap[i] <= self.max_heap[p]:
break
# 交换两结点
self.swap(i, p)
# 循环向上堆化
i = p
# 元素出堆
def poll(self) -> int:
# 判空处理
assert not self.is_empty()
# 交换根结点与最右叶结点(即交换首元素与尾元素)
self.swap(0, self.size() - 1)
# 删除结点
val = self.max_heap.pop()
# 从顶至底堆化
self.sift_down(0)
# 返回堆顶元素
return val
# 从结点 i 开始,从顶至底堆化
def sift_down(self, i: int):
while True:
# 判断结点 i, l, r 中值最大的结点,记为 ma
l, r, ma = self.left(i), self.right(i), i
if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
ma = l
if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
ma = r
# 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
if ma == i:
break
# 交换两结点
self.swap(i, ma)
# 循环向下堆化
i = ma
# 打印堆(二叉树)
def print(self):
print_heap(self.max_heap)
def test_push(max_heap: MaxHeap, val: int):
max_heap.push(val) # 元素入堆
print(f"\n添加元素 {val}\n")
max_heap.print()
def test_poll(max_heap: MaxHeap):
val = max_heap.poll() # 堆顶元素出堆
print(f"\n出堆元素为 {val}\n")
max_heap.print()
if __name__ == "__main__":
# 初始化大顶堆
max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
print("\n输入列表并建堆后")
max_heap.print()
# 获取堆顶元素
peek = max_heap.peek()
print(f"\n堆顶元素为 {peek}")
# 元素入堆
val = 7
max_heap.push(val)
print(f"\n元素 {val} 入堆后")
max_heap.print()
# 堆顶元素出堆
peek = max_heap.poll()
print(f"\n堆顶元素 {peek} 出堆后")
max_heap.print()
# 获取堆大小
size = max_heap.size()
print(f"\n堆元素数量为 {size}")
# 判断堆是否为空
is_empty = max_heap.is_empty()
print(f"\n堆是否为空 {is_empty}")

@ -1,5 +1,6 @@
import copy
import math
import heapq
import queue
import random
import functools
@ -7,4 +8,5 @@ import collections
from typing import Optional, List, Dict, DefaultDict, OrderedDict, Set, Deque
from .linked_list import ListNode, list_to_linked_list, linked_list_to_list, get_list_node
from .binary_tree import TreeNode, list_to_tree, tree_to_list, get_tree_node
from .print_util import print_matrix, print_linked_list, print_tree, print_dict
from .vertex import Vertex, vals_to_vets, vets_to_vals
from .print_util import print_matrix, print_linked_list, print_tree, print_dict, print_heap

@ -6,7 +6,7 @@ Author: Krahets (krahets@163.com), msk397 (machangxinq@gmail.com)
import copy
import queue
from .binary_tree import TreeNode, tree_to_list
from .binary_tree import TreeNode, tree_to_list, list_to_tree
from .linked_list import ListNode, linked_list_to_list
def print_matrix(mat):
@ -81,3 +81,9 @@ def print_dict(d):
"""
for key, value in d.items():
print(key, '->', value)
def print_heap(heap):
print("堆的数组表示:", heap);
print("堆的树状表示:");
root = list_to_tree(heap)
print_tree(root);

@ -0,0 +1,18 @@
# File: vertex.py
# Created Time: 2023-02-23
# Author: Krahets (krahets@163.com)
from typing import List
# 顶点类
class Vertex:
def __init__(self, val: int) -> None:
self.val = val
# 输入值列表 vals ,返回顶点列表 vets
def vals_to_vets(vals: List[int]) -> List['Vertex']:
return [Vertex(val) for val in vals]
# 输入顶点列表 vets ,返回值列表 vals
def vets_to_vals(vets: List['Vertex']) -> List[int]:
return [vet.val for vet in vets]
Loading…
Cancel
Save