diff --git a/docs/chapter_graph/graph_operations.md b/docs/chapter_graph/graph_operations.md index 9c9cfe6fe..2fa70c004 100644 --- a/docs/chapter_graph/graph_operations.md +++ b/docs/chapter_graph/graph_operations.md @@ -12,7 +12,7 @@ - **初始化**:传入 $n$ 个顶点,初始化长度为 $n$ 的顶点列表 `vertices` ,使用 $O(n)$ 时间;初始化 $n \times n$ 大小的邻接矩阵 `adjMat` ,使用 $O(n^2)$ 时间。 === "初始化邻接矩阵" - ![adjacency_matrix_initialization](graph_operations.assets/adjacency_matrix_initialization.png) + ![邻接矩阵的初始化、增删边、增删顶点](graph_operations.assets/adjacency_matrix_initialization.png) === "添加边" ![adjacency_matrix_add_edge](graph_operations.assets/adjacency_matrix_add_edge.png) @@ -99,7 +99,7 @@ - **初始化**:需要在邻接表中建立 $n$ 个结点和 $2m$ 条边,使用 $O(n + m)$ 时间。 === "初始化邻接表" - ![adjacency_list_initialization](graph_operations.assets/adjacency_list_initialization.png) + ![邻接表的初始化、增删边、增删顶点](graph_operations.assets/adjacency_list_initialization.png) === "添加边" ![adjacency_list_add_edge](graph_operations.assets/adjacency_list_add_edge.png) diff --git a/docs/chapter_graph/graph_traversal.md b/docs/chapter_graph/graph_traversal.md index 3d584c38a..b9492a34c 100644 --- a/docs/chapter_graph/graph_traversal.md +++ b/docs/chapter_graph/graph_traversal.md @@ -87,7 +87,7 @@ BFS 常借助「队列」来实现。队列具有“先入先出”的性质, 代码相对抽象,建议对照以下动画图示来加深理解。 === "<1>" - ![graph_bfs_step1](graph_traversal.assets/graph_bfs_step1.png) + ![图的广度优先遍历步骤](graph_traversal.assets/graph_bfs_step1.png) === "<2>" ![graph_bfs_step2](graph_traversal.assets/graph_bfs_step2.png) @@ -227,7 +227,7 @@ BFS 常借助「队列」来实现。队列具有“先入先出”的性质, 为了加深理解,请你将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。 === "<1>" - ![graph_dfs_step1](graph_traversal.assets/graph_dfs_step1.png) + ![图的深度优先遍历步骤](graph_traversal.assets/graph_dfs_step1.png) === "<2>" ![graph_dfs_step2](graph_traversal.assets/graph_dfs_step2.png) diff --git a/docs/chapter_heap/heap.md b/docs/chapter_heap/heap.md index 896d68eb2..cdb2436ac 100644 --- a/docs/chapter_heap/heap.md +++ b/docs/chapter_heap/heap.md @@ -487,7 +487,7 @@ 考虑从入堆结点开始,**从底至顶执行堆化**。具体地,比较插入结点与其父结点的值,若插入结点更大则将它们交换;并循环以上操作,从底至顶地修复堆中的各个结点;直至越过根结点时结束,或当遇到无需交换的结点时提前结束。 === "<1>" - ![heap_push_step1](heap.assets/heap_push_step1.png) + ![元素入堆步骤](heap.assets/heap_push_step1.png) === "<2>" ![heap_push_step2](heap.assets/heap_push_step2.png) @@ -597,7 +597,7 @@ 顾名思义,**从顶至底堆化的操作方向与从底至顶堆化相反**,我们比较根结点的值与其两个子结点的值,将最大的子结点与根结点执行交换,并循环以上操作,直到越过叶结点时结束,或当遇到无需交换的结点时提前结束。 === "<1>" - ![heap_poll_step1](heap.assets/heap_poll_step1.png) + ![堆顶元素出堆步骤](heap.assets/heap_poll_step1.png) === "<2>" ![heap_poll_step2](heap.assets/heap_poll_step2.png) diff --git a/docs/chapter_introduction/algorithms_are_everywhere.md b/docs/chapter_introduction/algorithms_are_everywhere.md index 4ecea1614..92785f36f 100644 --- a/docs/chapter_introduction/algorithms_are_everywhere.md +++ b/docs/chapter_introduction/algorithms_are_everywhere.md @@ -15,7 +15,7 @@ 3. 循环执行步骤 1-2 ,直到找到拼音首字母为 $r$ 的页码时终止。 === "<1>" - ![look_up_dictionary_step_1](algorithms_are_everywhere.assets/look_up_dictionary_step_1.png) + ![查字典步骤](algorithms_are_everywhere.assets/look_up_dictionary_step_1.png) === "<2>" ![look_up_dictionary_step_2](algorithms_are_everywhere.assets/look_up_dictionary_step_2.png) diff --git a/docs/chapter_searching/binary_search.md b/docs/chapter_searching/binary_search.md index f499573df..671390d0f 100755 --- a/docs/chapter_searching/binary_search.md +++ b/docs/chapter_searching/binary_search.md @@ -25,7 +25,7 @@ $$ 首先,我们先采用“双闭区间”的表示,在数组 `nums` 中查找目标元素 `target` 的对应索引。 === "<1>" - ![binary_search_step1](binary_search.assets/binary_search_step1.png) + ![二分查找步骤](binary_search.assets/binary_search_step1.png) === "<2>" ![binary_search_step2](binary_search.assets/binary_search_step2.png) diff --git a/docs/chapter_sorting/bubble_sort.md b/docs/chapter_sorting/bubble_sort.md index b88695311..263f7c82f 100755 --- a/docs/chapter_sorting/bubble_sort.md +++ b/docs/chapter_sorting/bubble_sort.md @@ -11,7 +11,7 @@ 完成此次冒泡操作后,**数组最大元素已在正确位置,接下来只需排序剩余 $n - 1$ 个元素**。 === "<1>" - ![bubble_operation_step1](bubble_sort.assets/bubble_operation_step1.png) + ![冒泡操作步骤](bubble_sort.assets/bubble_operation_step1.png) === "<2>" ![bubble_operation_step2](bubble_sort.assets/bubble_operation_step2.png) diff --git a/docs/chapter_sorting/merge_sort.md b/docs/chapter_sorting/merge_sort.md index 4c6ed9615..844417c7d 100755 --- a/docs/chapter_sorting/merge_sort.md +++ b/docs/chapter_sorting/merge_sort.md @@ -19,7 +19,7 @@ 需要注意,由于从长度为 1 的子数组开始合并,所以 **每个子数组都是有序的**。因此,合并任务本质是要 **将两个有序子数组合并为一个有序数组**。 === "<1>" - ![merge_sort_step1](merge_sort.assets/merge_sort_step1.png) + ![归并排序步骤](merge_sort.assets/merge_sort_step1.png) === "<2>" ![merge_sort_step2](merge_sort.assets/merge_sort_step2.png) diff --git a/docs/chapter_sorting/quick_sort.md b/docs/chapter_sorting/quick_sort.md index 3a34fb300..1dc30ec0d 100755 --- a/docs/chapter_sorting/quick_sort.md +++ b/docs/chapter_sorting/quick_sort.md @@ -11,7 +11,7 @@ 「哨兵划分」执行完毕后,原数组被划分成两个部分,即 **左子数组** 和 **右子数组**,且满足 **左子数组任意元素 < 基准数 < 右子数组任意元素**。因此,接下来我们只需要排序两个子数组即可。 === "<1>" - ![pivot_division_step1](quick_sort.assets/pivot_division_step1.png) + ![哨兵划分步骤](quick_sort.assets/pivot_division_step1.png) === "<2>" ![pivot_division_step2](quick_sort.assets/pivot_division_step2.png) diff --git a/docs/chapter_stack_and_queue/deque.md b/docs/chapter_stack_and_queue/deque.md index 5dcc192c6..b513013ab 100644 --- a/docs/chapter_stack_and_queue/deque.md +++ b/docs/chapter_stack_and_queue/deque.md @@ -298,7 +298,7 @@ 我们将双向链表的头结点和尾结点分别看作双向队列的队首和队尾,并且实现在两端都能添加与删除结点。 === "LinkedListDeque" - ![linkedlist_deque](deque.assets/linkedlist_deque.png) + ![基于链表实现双向队列的入队出队操作](deque.assets/linkedlist_deque.png) === "pushLast()" ![linkedlist_deque_push_last](deque.assets/linkedlist_deque_push_last.png) @@ -389,7 +389,7 @@ 与基于数组实现队列类似,我们也可以使用环形数组来实现双向队列。在实现队列的基础上,增加实现“队首入队”和“队尾出队”方法即可。 === "ArrayDeque" - ![array_deque](deque.assets/array_deque.png) + ![基于数组实现双向队列的入队出队操作](deque.assets/array_deque.png) === "pushLast()" ![array_deque_push_last](deque.assets/array_deque_push_last.png) diff --git a/docs/chapter_stack_and_queue/queue.md b/docs/chapter_stack_and_queue/queue.md index 61226057b..d665af8c5 100755 --- a/docs/chapter_stack_and_queue/queue.md +++ b/docs/chapter_stack_and_queue/queue.md @@ -263,7 +263,7 @@ 我们将链表的「头结点」和「尾结点」分别看作是队首和队尾,并规定队尾只可添加结点,队首只可删除结点。 === "LinkedListQueue" - ![linkedlist_queue](queue.assets/linkedlist_queue.png) + ![基于链表实现队列的入队出队操作](queue.assets/linkedlist_queue.png) === "push()" ![linkedlist_queue_push](queue.assets/linkedlist_queue_push.png) @@ -347,7 +347,7 @@ 观察发现,入队与出队操作都仅需单次操作即可完成,时间复杂度皆为 $O(1)$ 。 === "ArrayQueue" - ![array_queue](queue.assets/array_queue.png) + ![基于数组实现队列的入队出队操作](queue.assets/array_queue.png) === "push()" ![array_queue_push](queue.assets/array_queue_push.png) diff --git a/docs/chapter_stack_and_queue/stack.md b/docs/chapter_stack_and_queue/stack.md index 65c7684ce..989759e12 100755 --- a/docs/chapter_stack_and_queue/stack.md +++ b/docs/chapter_stack_and_queue/stack.md @@ -266,7 +266,7 @@ 对于入栈操作,将元素插入到链表头部即可,这种结点添加方式被称为“头插法”。而对于出栈操作,则将头结点从链表中删除即可。 === "LinkedListStack" - ![linkedlist_stack](stack.assets/linkedlist_stack.png) + ![基于链表实现栈的入栈出栈操作](stack.assets/linkedlist_stack.png) === "push()" ![linkedlist_stack_push](stack.assets/linkedlist_stack_push.png) @@ -341,7 +341,7 @@ 使用「数组」实现栈时,考虑将数组的尾部当作栈顶。这样设计下,「入栈」与「出栈」操作就对应在数组尾部「添加元素」与「删除元素」,时间复杂度都为 $O(1)$ 。 === "ArrayStack" - ![array_stack](stack.assets/array_stack.png) + ![基于数组实现栈的入栈出栈操作](stack.assets/array_stack.png) === "push()" ![array_stack_push](stack.assets/array_stack_push.png) diff --git a/docs/chapter_tree/avl_tree.md b/docs/chapter_tree/avl_tree.md index 7fe363452..c7ae00f50 100644 --- a/docs/chapter_tree/avl_tree.md +++ b/docs/chapter_tree/avl_tree.md @@ -310,7 +310,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影 如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 **结点 3**。我们聚焦在以该失衡结点为根结点的子树上,将该结点记为 `node` ,将其左子结点记为 `child` ,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。 === "<1>" - ![avltree_right_rotate_step1](avl_tree.assets/avltree_right_rotate_step1.png) + ![右旋操作步骤](avl_tree.assets/avltree_right_rotate_step1.png) === "<2>" ![avltree_right_rotate_step2](avl_tree.assets/avltree_right_rotate_step2.png) diff --git a/docs/chapter_tree/binary_search_tree.md b/docs/chapter_tree/binary_search_tree.md index 3a66c1ba5..621d64744 100755 --- a/docs/chapter_tree/binary_search_tree.md +++ b/docs/chapter_tree/binary_search_tree.md @@ -18,7 +18,7 @@ - 若 `cur.val = num` ,说明找到目标结点,跳出循环并返回该结点即可; === "<1>" - ![bst_search_step1](binary_search_tree.assets/bst_search_step1.png) + ![查找结点步骤](binary_search_tree.assets/bst_search_step1.png) === "<2>" ![bst_search_step2](binary_search_tree.assets/bst_search_step2.png) @@ -185,7 +185,7 @@ 3. 使用 `nex` 替换待删除结点; === "<1>" - ![bst_remove_case3_step1](binary_search_tree.assets/bst_remove_case3_step1.png) + ![删除结点(度为 2)步骤](binary_search_tree.assets/bst_remove_case3_step1.png) === "<2>" ![bst_remove_case3_step2](binary_search_tree.assets/bst_remove_case3_step2.png)