diff --git a/codes/cpp/chapter_tree/avl_tree.cpp b/codes/cpp/chapter_tree/avl_tree.cpp new file mode 100644 index 000000000..b816f9752 --- /dev/null +++ b/codes/cpp/chapter_tree/avl_tree.cpp @@ -0,0 +1,228 @@ +/* + * File: avl_tree.cpp + * Created Time: 2022-12-2 + * Author: mgisr (maguagua0706@gmail.com) + */ + +#include "../include/include.hpp" + +class AvlTree { +private: + TreeNode *root{}; + static bool isBalance(const TreeNode *p); + static int getBalanceFactor(const TreeNode *p); + static void updateHeight(TreeNode *p); + void fixBalance(TreeNode *p); + static bool isLeftChild(const TreeNode *p); + static TreeNode *&fromParentTo(TreeNode *node); +public: + AvlTree() = default; + AvlTree(const AvlTree &p) = default; + const TreeNode *search(int val); + bool insert(int val); + bool remove(int val); + void printTree(); +}; + +// 判断该结点是否平衡 +bool AvlTree::isBalance(const TreeNode *p) { + int balance_factor = getBalanceFactor(p); + if (-1 <= balance_factor && balance_factor <= 1) { return true; } + else { return false; } +} + +// 获取当前结点的平衡因子 +int AvlTree::getBalanceFactor(const TreeNode *p) { + if (p->left == nullptr && p->right == nullptr) { return 0; } + else if (p->left == nullptr) { return (-1 - p->right->height); } + else if (p->right == nullptr) { return p->left->height + 1; } + else { return p->left->height - p->right->height; } +} + +// 更新结点高度 +void AvlTree::updateHeight(TreeNode *p) { + if (p->left == nullptr && p->right == nullptr) { p->height = 0; } + else if (p->left == nullptr) { p->height = p->right->height + 1; } + else if (p->right == nullptr) { p->height = p->left->height + 1; } + else { p->height = std::max(p->left->height, p->right->height) + 1; } +} + +void AvlTree::fixBalance(TreeNode *p) { + // 左旋操作 + auto rotate_left = [&](TreeNode *node) -> TreeNode * { + TreeNode *temp = node->right; + temp->parent = p->parent; + node->right = temp->left; + if (temp->left != nullptr) { + temp->left->parent = node; + } + temp->left = node; + node->parent = temp; + updateHeight(node); + updateHeight(temp); + return temp; + }; + // 右旋操作 + auto rotate_right = [&](TreeNode *node) -> TreeNode * { + TreeNode *temp = node->left; + temp->parent = p->parent; + node->left = temp->right; + if (temp->right != nullptr) { + temp->right->parent = node; + } + temp->right = node; + node->parent = temp; + updateHeight(node); + updateHeight(temp); + return temp; + }; + // 根据规则选取旋转方式 + if (getBalanceFactor(p) > 1) { + if (getBalanceFactor(p->left) > 0) { + if (p->parent == nullptr) { root = rotate_right(p); } + else { fromParentTo(p) = rotate_right(p); } + } else { + p->left = rotate_left(p->left); + if (p->parent == nullptr) { root = rotate_right(p); } + else { fromParentTo(p) = rotate_right(p); } + } + } else { + if (getBalanceFactor(p->right) < 0) { + if (p->parent == nullptr) { root = rotate_left(p); } + else { fromParentTo(p) = rotate_left(p); } + } else { + p->right = rotate_right(p->right); + if (p->parent == nullptr) { root = rotate_left(p); } + else { fromParentTo(p) = rotate_left(p); } + } + } +} + +// 判断当前结点是否为其父节点的左孩子 +bool AvlTree::isLeftChild(const TreeNode *p) { + if (p->parent == nullptr) { return false; } + return (p->parent->left == p); +} + +// 返回父节点指向当前结点指针的引用 +TreeNode *&AvlTree::fromParentTo(TreeNode *node) { + if (isLeftChild(node)) { return node->parent->left; } + else { return node->parent->right; } +} + +const TreeNode *AvlTree::search(int val) { + TreeNode *p = root; + while (p != nullptr) { + if (p->val == val) { return p; } + else if (p->val > val) { p = p->left; } + else { p = p->right; } + } + return nullptr; +} + +bool AvlTree::insert(int val) { + TreeNode *p = root; + if (p == nullptr) { + root = new TreeNode(val); + return true; + } + for (;;) { + if (p->val == val) { return false; } + else if (p->val > val) { + if (p->left == nullptr) { + p->left = new TreeNode(val, p); + break; + } else { + p = p->left; + } + } else { + if (p->right == nullptr) { + p->right = new TreeNode(val, p); + break; + } else { + p = p->right; + } + } + } + for (; p != nullptr; p = p->parent) { + if (!isBalance(p)) { + fixBalance(p); + break; + } else { updateHeight(p); } + } + return true; +} + +bool AvlTree::remove(int val) { + TreeNode *p = root; + if (p == nullptr) { return false; } + while (p != nullptr) { + if (p->val == val) { + TreeNode *real_delete_node = p; + TreeNode *next_node; + if (p->left == nullptr) { + next_node = p->right; + if (p->parent == nullptr) { root = next_node; } + else { fromParentTo(p) = next_node; } + } else if (p->right == nullptr) { + next_node = p->left; + if (p->parent == nullptr) { root = next_node; } + else { fromParentTo(p) = next_node; } + } else { + while (real_delete_node->left != nullptr) { + real_delete_node = real_delete_node->left; + } + std::swap(p->val, real_delete_node->val); + next_node = real_delete_node->right; + if (real_delete_node->parent == p) { p->right = next_node; } + else { real_delete_node->parent->left = next_node; } + } + if (next_node != nullptr) { + next_node->parent = real_delete_node->parent; + } + for (p = real_delete_node; p != nullptr; p = p->parent) { + if (!isBalance(p)) { fixBalance(p); } + updateHeight(p); + } + delete real_delete_node; + return true; + } else if (p->val > val) { + p = p->left; + } else { + p = p->right; + } + } + return false; +} + +void inOrder(const TreeNode *root) { + if (root == nullptr) return; + inOrder(root->left); + cout << root->val << ' '; + inOrder(root->right); +} + +void AvlTree::printTree() { + inOrder(root); + cout << endl; +} + +int main() { + AvlTree tree = AvlTree(); + // tree.insert(13); + // tree.insert(24); + // tree.insert(37); + // tree.insert(90); + // tree.insert(53); + + tree.insert(53); + tree.insert(90); + tree.insert(37); + tree.insert(24); + tree.insert(13); + tree.remove(90); + tree.printTree(); + const TreeNode *p = tree.search(37); + cout << p->val; + return 0; +} \ No newline at end of file diff --git a/codes/cpp/include/TreeNode.hpp b/codes/cpp/include/TreeNode.hpp index 7be2b8d20..b3b27a65b 100644 --- a/codes/cpp/include/TreeNode.hpp +++ b/codes/cpp/include/TreeNode.hpp @@ -11,10 +11,13 @@ * */ struct TreeNode { - int val; - TreeNode *left; - TreeNode *right; - TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} + int val{}; + int height = 0; + TreeNode *parent{}; + TreeNode *left{}; + TreeNode *right{}; + TreeNode() = default; + explicit TreeNode(int x, TreeNode *parent = nullptr) : val(x), parent(parent) {} }; /** diff --git a/codes/java/include/TreeNode.java b/codes/java/include/TreeNode.java old mode 100755 new mode 100644 diff --git a/docs/chapter_tree/avl_tree.assets/degradation_from_inserting_node.png b/docs/chapter_tree/avl_tree.assets/degradation_from_inserting_node.png new file mode 100644 index 000000000..60faa77fa Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/degradation_from_inserting_node.png differ diff --git a/docs/chapter_tree/avl_tree.assets/degradation_from_removing_node.png b/docs/chapter_tree/avl_tree.assets/degradation_from_removing_node.png new file mode 100644 index 000000000..90f1d155c Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/degradation_from_removing_node.png differ diff --git a/docs/chapter_tree/avl_tree.assets/left_right_rotate.png b/docs/chapter_tree/avl_tree.assets/left_right_rotate.png new file mode 100644 index 000000000..a5e73acb6 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/left_right_rotate.png differ diff --git a/docs/chapter_tree/avl_tree.assets/left_rotate_with_grandchild.png b/docs/chapter_tree/avl_tree.assets/left_rotate_with_grandchild.png new file mode 100644 index 000000000..8384696b4 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/left_rotate_with_grandchild.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_left_rotate.png b/docs/chapter_tree/avl_tree.assets/right_left_rotate.png new file mode 100644 index 000000000..3e178b894 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_left_rotate.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step1.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step1.png new file mode 100644 index 000000000..6337ad540 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step1.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step2.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step2.png new file mode 100644 index 000000000..108e2754b Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step2.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step3.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step3.png new file mode 100644 index 000000000..7d9c996f0 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step3.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step4.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step4.png new file mode 100644 index 000000000..eccc0f9d4 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step4.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_with_grandchild.png b/docs/chapter_tree/avl_tree.assets/right_rotate_with_grandchild.png new file mode 100644 index 000000000..a1c80c6e6 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_with_grandchild.png differ diff --git a/docs/chapter_tree/avl_tree.assets/rotation_cases.png b/docs/chapter_tree/avl_tree.assets/rotation_cases.png new file mode 100644 index 000000000..6cd6128d1 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/rotation_cases.png differ diff --git a/docs/chapter_tree/avl_tree.md b/docs/chapter_tree/avl_tree.md new file mode 100644 index 000000000..6e13af6b9 --- /dev/null +++ b/docs/chapter_tree/avl_tree.md @@ -0,0 +1,636 @@ +# AVL 树 + +在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。 + +如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。 + +![degradation_from_removing_node](avl_tree.assets/degradation_from_removing_node.png) + +再比如,在以下完美二叉树中插入两个结点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。 + +![degradation_from_inserting_node](avl_tree.assets/degradation_from_inserting_node.png) + +G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。**论文中描述了一系列操作,使得在不断添加与删除结点后,AVL 树仍然不会发生退化**,进而使得各种操作的时间复杂度均能保持在 $O(\log n)$ 级别。 + +换言之,在频繁增删查改的使用场景中,AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。 + +## AVL 树常见术语 + +「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。 + +### 结点高度 + +在 AVL 树的操作中,需要获取结点「高度 Height」,所以给 AVL 树的结点类添加 `height` 变量。 + +=== "Java" + + ```java title="avl_tree.java" + /* AVL 树结点类 */ + class TreeNode { + public int val; // 结点值 + public int height; // 结点高度 + public TreeNode left; // 左子结点 + public TreeNode right; // 右子结点 + public TreeNode(int x) { val = x; } + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +「结点高度」是最远叶结点到该结点的距离,即走过的「边」的数量。需要特别注意,**叶结点的高度为 0 ,空结点的高度为 -1** 。我们封装两个工具函数,分别用于获取与更新结点的高度。 + +=== "Java" + + ```java title="avl_tree.java" + /* 获取结点高度 */ + int height(TreeNode node) { + // 空结点高度为 -1 ,叶结点高度为 0 + return node == null ? -1 : node.height; + } + + /* 更新结点高度 */ + void updateHeight(TreeNode node) { + // 结点高度等于最高子树高度 + 1 + node.height = Math.max(height(node.left), height(node.right)) + 1; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### 结点平衡因子 + +结点的「平衡因子 Balance Factor」是 **结点的左子树高度减去右子树高度**,并定义空结点的平衡因子为 0 。同样地,我们将获取结点平衡因子封装成函数,以便后续使用。 + +=== "Java" + + ```java title="avl_tree.java" + /* 获取结点平衡因子 */ + public int balanceFactor(TreeNode node) { + // 空结点平衡因子为 0 + if (node == null) return 0; + // 结点平衡因子 = 左子树高度 - 右子树高度 + return height(node.left) - height(node.right); + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +!!! note + + 设平衡因子为 $f$ ,则一棵 AVL 树的任意结点的平衡因子皆满足 $-1 \le f \le 1$ 。 + +## AVL 树旋转 + +AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影响二叉树中序遍历序列的前提下,使失衡结点重新恢复平衡。** 换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。 + +我们将平衡因子的绝对值 $> 1$ 的结点称为「失衡结点」。根据结点的失衡情况,旋转操作分为 **右旋、左旋、先右旋后左旋、先左旋后右旋**,接下来我们来一起来看看它们是如何操作的。 + +### Case 1 - 右旋 + +如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 **结点 2** 。我们聚焦在以结点 2 为根结点的子树上,将该结点记为 `node` ,将其左子节点记为 `child` ,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。 + +=== "Step 1" + ![right_rotate_step1](avl_tree.assets/right_rotate_step1.png) +=== "Step 2" + ![right_rotate_step2](avl_tree.assets/right_rotate_step2.png) +=== "Step 3" + ![right_rotate_step3](avl_tree.assets/right_rotate_step3.png) +=== "Step 4" + ![right_rotate_step4](avl_tree.assets/right_rotate_step4.png) + +进而,如果结点 `child` 本身有右子结点(记为 `grandChild`),则需要在「右旋」中添加一步:将 `grandChild` 作为 `node` 的左子结点。 + +![right_rotate_with_grandchild](avl_tree.assets/right_rotate_with_grandchild.png) + +“向右旋转” 是一种形象化的说法,实际需要通过修改结点指针实现,代码如下所示。 + +=== "Java" + + ```java title="avl_tree.java" + /* 右旋操作 */ + TreeNode rightRotate(TreeNode node) { + TreeNode child = node.left; + TreeNode grandChild = child.right; + // 以 child 为原点,将 node 向右旋转 + child.right = node; + node.left = grandChild; + // 更新结点高度 + updateHeight(node); + updateHeight(child); + // 返回旋转后的根节点 + return child; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### Case 2 - 左旋 + +类似地,如果将取上述失衡二叉树的 “镜像” ,那么则需要「左旋」操作。观察发现,**「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的**,这说明两种旋转操作本质上是一样的。 + +![left_rotate_with_grandchild](avl_tree.assets/left_rotate_with_grandchild.png) + +=== "Java" + + ```java title="avl_tree.java" + /* 左旋操作 */ + private TreeNode leftRotate(TreeNode node) { + TreeNode child = node.right; + TreeNode grandChild = child.left; + // 以 child 为原点,将 node 向左旋转 + child.left = node; + node.right = grandChild; + // 更新结点高度 + updateHeight(node); + updateHeight(child); + // 返回旋转后的根节点 + return child; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### Case 3 - 先左后右 + +对于下图的失衡结点 3 ,**单一使用左旋或右旋都无法使子树恢复平衡**,此时需要「先左旋后右旋」,即先对 `child` 执行「左旋」,再对 `node` 执行「右旋」。 + +![left_right_rotate](avl_tree.assets/left_right_rotate.png) + +### Case 4 - 先右后左 + +同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 `child` 执行「右旋」,然后对 `node` 执行「左旋」。 + +![right_left_rotate](avl_tree.assets/right_left_rotate.png) + +### 旋转的选择 + +下图总结了以上四种失衡情况,分别采用右旋、左旋、先右后左、先左后右的旋转组合。 + +![rotation_cases](avl_tree.assets/rotation_cases.png) + +具体地,需要使用 **失衡结点的平衡因子、较高一侧子结点的平衡因子** 来确定失衡结点属于上图中的哪种情况。 + +
+ +| 失衡结点的平衡因子 | 子结点的平衡因子 | 应采用的旋转方法 | +| ------------------ | ---------------- | ---------------- | +| $>0$ (即左偏树) | $\geq 0$ | 右旋 | +| $>0$ (即左偏树) | $<0$ | 先左旋后右旋 | +| $<0$ (即右偏树) | $\leq 0$ | 左旋 | +| $<0$ (即右偏树) | $>0$ | 先右旋后左旋 | + +
+ +下面,将旋转操作封装成一个函数。至此,**我们可以通过此函数来处理所有类型的失衡结点,使之恢复平衡**。 + +=== "Java" + + ```java title="avl_tree.java" + /* 执行旋转操作,使该子树重新恢复平衡 */ + TreeNode rotate(TreeNode node) { + // 获取结点 node 的平衡因子 + int balanceFactor = balanceFactor(node); + // 左偏树 + if (balanceFactor > 1) { + if (balanceFactor(node.left) >= 0) { + // 右旋 + return rightRotate(node); + } else { + // 先左旋后右旋 + node.left = leftRotate(node.left); + return rightRotate(node); + } + } + // 右偏树 + if (balanceFactor < -1) { + if (balanceFactor(node.right) <= 0) { + // 左旋 + return leftRotate(node); + } else { + // 先右旋后左旋 + node.right = rightRotate(node.right); + return leftRotate(node); + } + } + // 平衡树,无需旋转,直接返回 + return node; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +## AVL 树常用操作 + +### 插入结点 + +「AVL 树」的结点插入操作与「二叉搜索树」主体类似。不同的是,在插入结点后,从该结点到根结点的路径上会出现「失衡结点」。所以,**我们需要从该结点开始,从底至顶地执行旋转操作,使所有失衡结点恢复平衡**。 + +=== "Java" + + ```java title="avl_tree.java" + /* 插入结点 */ + TreeNode insert(int val) { + root = insertHelper(root, val); + return root; + } + + /* 递归插入结点(辅助函数) */ + TreeNode insertHelper(TreeNode node, int val) { + if (node == null) return new TreeNode(val); + /* 1. 查找插入位置,并插入结点 */ + if (val < node.val) + node.left = insertHelper(node.left, val); + else if (val > node.val) + node.right = insertHelper(node.right, val); + else + return node; // 重复结点不插入,直接返回 + updateHeight(node); // 更新结点高度 + /* 2. 执行旋转操作,使该子树重新恢复平衡 */ + node = rotate(node); + // 返回子树的根节点 + return node; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### 删除结点 + +「AVL 树」删除结点操作与「二叉搜索树」删除结点操作总体相同。类似地,**在删除结点后,也需要从底至顶地执行旋转操作,使所有失衡结点恢复平衡**。 + +=== "Java" + + ```java title="avl_tree.java" + /* 删除结点 */ + TreeNode remove(int val) { + root = removeHelper(root, val); + return root; + } + + /* 递归删除结点(辅助函数) */ + TreeNode removeHelper(TreeNode node, int val) { + if (node == null) return null; + /* 1. 查找结点,并删除之 */ + if (val < node.val) + node.left = removeHelper(node.left, val); + else if (val > node.val) + node.right = removeHelper(node.right, val); + else { + if (node.left == null || node.right == null) { + TreeNode child = node.left != null ? node.left : node.right; + // 子结点数量 = 0 ,直接删除 node 并返回 + if (child == null) + return null; + // 子结点数量 = 1 ,直接删除 node + else + node = child; + } else { + // 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点 + TreeNode temp = minNode(node.right); + node.right = removeHelper(node.right, temp.val); + node.val = temp.val; + } + } + updateHeight(node); // 更新结点高度 + /* 2. 执行旋转操作,使该子树重新恢复平衡 */ + node = rotate(node); + // 返回子树的根节点 + return node; + } + + /* 获取最小结点 */ + TreeNode minNode(TreeNode node) { + if (node == null) return node; + // 循环访问左子结点,直到叶结点时为最小结点,跳出 + while (node.left != null) { + node = node.left; + } + return node; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### 查找结点 + +「AVL 树」的结点查找操作与「二叉搜索树」一致,在此不再赘述。 diff --git a/mkdocs.yml b/mkdocs.yml index 18675388d..5b4904387 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -154,6 +154,7 @@ nav: - 二叉树(Binary Tree): chapter_tree/binary_tree.md - 二叉树常见类型: chapter_tree/binary_tree_types.md - 二叉搜索树: chapter_tree/binary_search_tree.md + - AVL 树: chapter_tree/avl_tree.md - 小结: chapter_tree/summary.md - 查找算法: - 线性查找: chapter_searching/linear_search.md