@ -0,0 +1,2 @@
|
||||
add_executable(coin_change_greedy coin_change_greedy.cpp)
|
||||
add_executable(fractional_knapsack fractional_knapsack.cpp)
|
@ -0,0 +1,60 @@
|
||||
/**
|
||||
* File: coin_change_greedy.cpp
|
||||
* Created Time: 2023-07-20
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
#include "../utils/common.hpp"
|
||||
|
||||
/* 零钱兑换:贪心 */
|
||||
int coinChangeGreedy(vector<int> &coins, int amt) {
|
||||
// 假设 coins 列表有序
|
||||
int i = coins.size() - 1;
|
||||
int count = 0;
|
||||
// 循环进行贪心选择,直到无剩余金额
|
||||
while (amt > 0) {
|
||||
// 找到小于且最接近剩余金额的硬币
|
||||
while (coins[i] > amt) {
|
||||
i--;
|
||||
}
|
||||
// 选择 coins[i]
|
||||
amt -= coins[i];
|
||||
count++;
|
||||
}
|
||||
// 若未找到可行方案,则返回 -1
|
||||
return amt == 0 ? count : -1;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
// 贪心:能够保证找到全局最优解
|
||||
vector<int> coins = {1, 5, 10, 20, 50, 100};
|
||||
int amt = 186;
|
||||
int res = coinChangeGreedy(coins, amt);
|
||||
cout << "\ncoins = ";
|
||||
printVector(coins);
|
||||
cout << "amt = " << amt << endl;
|
||||
cout << "凑到 " << amt << " 所需的最少硬币数量为 " << res << endl;
|
||||
|
||||
// 贪心:无法保证找到全局最优解
|
||||
coins = {1, 20, 50};
|
||||
amt = 60;
|
||||
res = coinChangeGreedy(coins, amt);
|
||||
cout << "\ncoins = [";
|
||||
printVector(coins);
|
||||
cout << "amt = " << amt << endl;
|
||||
cout << "凑到 " << amt << " 所需的最少硬币数量为 " << res << endl;
|
||||
cout << "实际上需要的最少数量为 3 ,即 20 + 20 + 20" << endl;
|
||||
|
||||
// 贪心:无法保证找到全局最优解
|
||||
coins = {1, 49, 50};
|
||||
amt = 98;
|
||||
res = coinChangeGreedy(coins, amt);
|
||||
cout << "\ncoins = [";
|
||||
printVector(coins);
|
||||
cout << "amt = " << amt << endl;
|
||||
cout << "凑到 " << amt << " 所需的最少硬币数量为 " << res << endl;
|
||||
cout << "实际上需要的最少数量为 2 ,即 49 + 49" << endl;
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,56 @@
|
||||
/**
|
||||
* File: fractional_knapsack.cpp
|
||||
* Created Time: 2023-07-20
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
#include "../utils/common.hpp"
|
||||
|
||||
/* 物品 */
|
||||
class Item {
|
||||
public:
|
||||
int w; // 物品重量
|
||||
int v; // 物品价值
|
||||
|
||||
Item(int w, int v) : w(w), v(v) {
|
||||
}
|
||||
};
|
||||
|
||||
/* 分数背包:贪心 */
|
||||
double fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {
|
||||
// 创建物品列表,包含两个属性:重量、价值
|
||||
vector<Item> items;
|
||||
for (int i = 0; i < wgt.size(); i++) {
|
||||
items.push_back(Item(wgt[i], val[i]));
|
||||
}
|
||||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||||
sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });
|
||||
// 循环贪心选择
|
||||
double res = 0;
|
||||
for (auto &item : items) {
|
||||
if (item.w <= cap) {
|
||||
// 若剩余容量充足,则将当前物品整个装进背包
|
||||
res += item.v;
|
||||
cap -= item.w;
|
||||
} else {
|
||||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||||
res += (double)item.v / item.w * cap;
|
||||
// 已无剩余容量,因此跳出循环
|
||||
break;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
vector<int> wgt = {10, 20, 30, 40, 50};
|
||||
vector<int> val = {50, 120, 150, 210, 240};
|
||||
int cap = 50;
|
||||
|
||||
// 贪心算法
|
||||
double res = fractionalKnapsack(wgt, val, cap);
|
||||
cout << "不超过背包容量的最大物品价值为 " << res << endl;
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,55 @@
|
||||
/**
|
||||
* File: coin_change_greedy.java
|
||||
* Created Time: 2023-07-20
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_greedy;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
public class coin_change_greedy {
|
||||
/* 零钱兑换:贪心 */
|
||||
static int coinChangeGreedy(int[] coins, int amt) {
|
||||
// 假设 coins 列表有序
|
||||
int i = coins.length - 1;
|
||||
int count = 0;
|
||||
// 循环进行贪心选择,直到无剩余金额
|
||||
while (amt > 0) {
|
||||
// 找到小于且最接近剩余金额的硬币
|
||||
while (coins[i] > amt) {
|
||||
i--;
|
||||
}
|
||||
// 选择 coins[i]
|
||||
amt -= coins[i];
|
||||
count++;
|
||||
}
|
||||
// 若未找到可行方案,则返回 -1
|
||||
return amt == 0 ? count : -1;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// 贪心:能够保证找到全局最优解
|
||||
int[] coins = { 1, 5, 10, 20, 50, 100 };
|
||||
int amt = 186;
|
||||
int res = coinChangeGreedy(coins, amt);
|
||||
System.out.println("\ncoins = " + Arrays.toString(coins) + ", amt = " + amt);
|
||||
System.out.println("凑到 " + amt + " 所需的最少硬币数量为 " + res);
|
||||
|
||||
// 贪心:无法保证找到全局最优解
|
||||
coins = new int[] { 1, 20, 50 };
|
||||
amt = 60;
|
||||
res = coinChangeGreedy(coins, amt);
|
||||
System.out.println("\ncoins = " + Arrays.toString(coins) + ", amt = " + amt);
|
||||
System.out.println("凑到 " + amt + " 所需的最少硬币数量为 " + res);
|
||||
System.out.println("实际上需要的最少数量为 3 ,即 20 + 20 + 20");
|
||||
|
||||
// 贪心:无法保证找到全局最优解
|
||||
coins = new int[] { 1, 49, 50 };
|
||||
amt = 98;
|
||||
res = coinChangeGreedy(coins, amt);
|
||||
System.out.println("\ncoins = " + Arrays.toString(coins) + ", amt = " + amt);
|
||||
System.out.println("凑到 " + amt + " 所需的最少硬币数量为 " + res);
|
||||
System.out.println("实际上需要的最少数量为 2 ,即 49 + 49");
|
||||
}
|
||||
}
|
@ -0,0 +1,59 @@
|
||||
/**
|
||||
* File: fractional_knapsack.java
|
||||
* Created Time: 2023-07-20
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_greedy;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Comparator;
|
||||
|
||||
/* 物品 */
|
||||
class Item {
|
||||
int w; // 物品重量
|
||||
int v; // 物品价值
|
||||
|
||||
public Item(int w, int v) {
|
||||
this.w = w;
|
||||
this.v = v;
|
||||
}
|
||||
}
|
||||
|
||||
public class fractional_knapsack {
|
||||
/* 分数背包:贪心 */
|
||||
static double fractionalKnapsack(int[] wgt, int[] val, int cap) {
|
||||
// 创建物品列表,包含两个属性:重量、价值
|
||||
Item[] items = new Item[wgt.length];
|
||||
for (int i = 0; i < wgt.length; i++) {
|
||||
items[i] = new Item(wgt[i], val[i]);
|
||||
}
|
||||
// 按照单位价值 item.v / item.w 从高到低进行排序
|
||||
Arrays.sort(items, Comparator.comparingDouble(item -> -((double) item.v / item.w)));
|
||||
// 循环贪心选择
|
||||
double res = 0;
|
||||
for (Item item : items) {
|
||||
if (item.w <= cap) {
|
||||
// 若剩余容量充足,则将当前物品整个装进背包
|
||||
res += item.v;
|
||||
cap -= item.w;
|
||||
} else {
|
||||
// 若剩余容量不足,则将当前物品的一部分装进背包
|
||||
res += (double) item.v / item.w * cap;
|
||||
// 已无剩余容量,因此跳出循环
|
||||
break;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[] wgt = { 10, 20, 30, 40, 50 };
|
||||
int[] val = { 50, 120, 150, 210, 240 };
|
||||
int cap = 50;
|
||||
|
||||
// 贪心算法
|
||||
double res = fractionalKnapsack(wgt, val, cap);
|
||||
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
||||
}
|
||||
}
|
@ -0,0 +1,48 @@
|
||||
"""
|
||||
File: coin_change_greedy.py
|
||||
Created Time: 2023-07-18
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def coin_change_greedy(coins: list[int], amt: int) -> int:
|
||||
"""零钱兑换:贪心"""
|
||||
# 假设 coins 列表有序
|
||||
i = len(coins) - 1
|
||||
count = 0
|
||||
# 循环进行贪心选择,直到无剩余金额
|
||||
while amt > 0:
|
||||
# 找到小于且最接近剩余金额的硬币
|
||||
while coins[i] > amt:
|
||||
i -= 1
|
||||
# 选择 coins[i]
|
||||
amt -= coins[i]
|
||||
count += 1
|
||||
# 若未找到可行方案,则返回 -1
|
||||
return count if amt == 0 else -1
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
# 贪心:能够保证找到全局最优解
|
||||
coins = [1, 5, 10, 20, 50, 100]
|
||||
amt = 186
|
||||
res = coin_change_greedy(coins, amt)
|
||||
print(f"\ncoins = {coins}, amt = {amt}")
|
||||
print(f"凑到 {amt} 所需的最少硬币数量为 {res}")
|
||||
|
||||
# 贪心:无法保证找到全局最优解
|
||||
coins = [1, 20, 50]
|
||||
amt = 60
|
||||
res = coin_change_greedy(coins, amt)
|
||||
print(f"\ncoins = {coins}, amt = {amt}")
|
||||
print(f"凑到 {amt} 所需的最少硬币数量为 {res}")
|
||||
print(f"实际上需要的最少数量为 3 ,即 20 + 20 + 20")
|
||||
|
||||
# 贪心:无法保证找到全局最优解
|
||||
coins = [1, 49, 50]
|
||||
amt = 98
|
||||
res = coin_change_greedy(coins, amt)
|
||||
print(f"\ncoins = {coins}, amt = {amt}")
|
||||
print(f"凑到 {amt} 所需的最少硬币数量为 {res}")
|
||||
print(f"实际上需要的最少数量为 2 ,即 49 + 49")
|
@ -0,0 +1,46 @@
|
||||
"""
|
||||
File: fractional_knapsack.py
|
||||
Created Time: 2023-07-19
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
class Item:
|
||||
"""物品"""
|
||||
|
||||
def __init__(self, w: int, v: int):
|
||||
self.w = w # 物品重量
|
||||
self.v = v # 物品价值
|
||||
|
||||
|
||||
def fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:
|
||||
"""分数背包:贪心"""
|
||||
# 创建物品列表,包含两个属性:重量、价值
|
||||
items = [Item(w, v) for w, v in zip(wgt, val)]
|
||||
# 按照单位价值 item.v / item.w 从高到低进行排序
|
||||
items.sort(key=lambda item: item.v / item.w, reverse=True)
|
||||
# 循环贪心选择
|
||||
res = 0
|
||||
for item in items:
|
||||
if item.w <= cap:
|
||||
# 若剩余容量充足,则将当前物品整个装进背包
|
||||
res += item.v
|
||||
cap -= item.w
|
||||
else:
|
||||
# 若剩余容量不足,则将当前物品的一部分装进背包
|
||||
res += (item.v / item.w) * cap
|
||||
# 已无剩余容量,因此跳出循环
|
||||
break
|
||||
return res
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
wgt = [10, 20, 30, 40, 50]
|
||||
val = [50, 120, 150, 210, 240]
|
||||
cap = 50
|
||||
n = len(wgt)
|
||||
|
||||
# 贪心算法
|
||||
res = fractional_knapsack(wgt, val, cap)
|
||||
print(f"不超过背包容量的最大物品价值为 {res}")
|
After Width: | Height: | Size: 125 KiB |
After Width: | Height: | Size: 45 KiB |
After Width: | Height: | Size: 77 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 67 KiB |
After Width: | Height: | Size: 108 KiB |
After Width: | Height: | Size: 72 KiB |
@ -0,0 +1,7 @@
|
||||
# 贪心
|
||||
|
||||
<div class="center-table" markdown>
|
||||
|
||||
![贪心](../assets/covers/chapter_greedy.jpg){ width="70%" }
|
||||
|
||||
</div>
|