Add the section of knapsack problem. (#580)
@ -0,0 +1,99 @@
|
||||
"""
|
||||
File: knapsack.py
|
||||
Created Time: 2023-07-03
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def knapsack_dfs(wgt, val, i, c):
|
||||
"""0-1 背包:暴力搜索"""
|
||||
# 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if i == 0 or c == 0:
|
||||
return 0
|
||||
# 若超过背包容量,则只能不放入背包
|
||||
if wgt[i - 1] > c:
|
||||
return knapsack_dfs(wgt, val, i - 1, c)
|
||||
# 计算不放入和放入物品 i 的最大价值
|
||||
no = knapsack_dfs(wgt, val, i - 1, c)
|
||||
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||||
# 返回两种方案中价值更大的那一个
|
||||
return max(no, yes)
|
||||
|
||||
|
||||
def knapsack_dfs_mem(wgt, val, mem, i, c):
|
||||
"""0-1 背包:记忆化搜索"""
|
||||
# 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if i == 0 or c == 0:
|
||||
return 0
|
||||
# 若已有记录,则直接返回
|
||||
if mem[i][c] != -1:
|
||||
return mem[i][c]
|
||||
# 若超过背包容量,则只能不放入背包
|
||||
if wgt[i - 1] > c:
|
||||
return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
|
||||
# 计算不放入和放入物品 i 的最大价值
|
||||
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
|
||||
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||||
# 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = max(no, yes)
|
||||
return mem[i][c]
|
||||
|
||||
|
||||
def knapsack_dp(wgt, val, cap):
|
||||
"""0-1 背包:动态规划"""
|
||||
n = len(wgt)
|
||||
# 初始化 dp 列表
|
||||
dp = [[0] * (cap + 1) for _ in range(n + 1)]
|
||||
# 状态转移
|
||||
for i in range(1, n + 1):
|
||||
for c in range(1, cap + 1):
|
||||
if wgt[i - 1] > c:
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
else:
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c - wgt[i - 1]] + val[i - 1], dp[i - 1][c])
|
||||
return dp[n][cap]
|
||||
|
||||
|
||||
def knapsack_dp_comp(wgt, val, cap):
|
||||
"""0-1 背包:状态压缩后的动态规划"""
|
||||
n = len(wgt)
|
||||
# 初始化 dp 列表
|
||||
dp = [0] * (cap + 1)
|
||||
# 状态转移
|
||||
for i in range(1, n + 1):
|
||||
# 倒序遍历
|
||||
for c in range(cap, 0, -1):
|
||||
if wgt[i - 1] > c:
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c]
|
||||
else:
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c - wgt[i - 1]] + val[i - 1], dp[c])
|
||||
return dp[cap]
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
wgt = [10, 20, 30, 40, 50]
|
||||
val = [60, 100, 120, 160, 200]
|
||||
cap = 50
|
||||
n = len(wgt)
|
||||
|
||||
# 暴力搜索
|
||||
res = knapsack_dfs(wgt, val, n, cap)
|
||||
print(res)
|
||||
|
||||
# 记忆化搜索
|
||||
mem = [[-1] * (cap + 1) for _ in range(n + 1)]
|
||||
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
|
||||
print(res)
|
||||
|
||||
# 动态规划
|
||||
res = knapsack_dp(wgt, val, cap)
|
||||
print(res)
|
||||
|
||||
# 状态压缩后的动态规划
|
||||
res = knapsack_dp_comp(wgt, val, cap)
|
||||
print(res)
|
After Width: | Height: | Size: 103 KiB |
After Width: | Height: | Size: 103 KiB |
After Width: | Height: | Size: 63 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 68 KiB |
After Width: | Height: | Size: 67 KiB |
After Width: | Height: | Size: 65 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 61 KiB |
After Width: | Height: | Size: 65 KiB |
After Width: | Height: | Size: 64 KiB |
After Width: | Height: | Size: 69 KiB |
After Width: | Height: | Size: 69 KiB |
After Width: | Height: | Size: 58 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 64 KiB |
After Width: | Height: | Size: 66 KiB |
After Width: | Height: | Size: 67 KiB |
After Width: | Height: | Size: 67 KiB |
After Width: | Height: | Size: 69 KiB |