add zig codes for Section 'Heap' (heap.zig)

pull/256/head
sjinzh 2 years ago
parent 92b7aecf70
commit 5bda3dd91f

@ -187,7 +187,21 @@ pub fn build(b: *std.build.Builder) void {
if (b.args) |args| run_cmd_binary_tree.addArgs(args); if (b.args) |args| run_cmd_binary_tree.addArgs(args);
const run_step_binary_tree= b.step("run_binary_tree", "Run binary_tree"); const run_step_binary_tree= b.step("run_binary_tree", "Run binary_tree");
run_step_binary_tree.dependOn(&run_cmd_binary_tree.step); run_step_binary_tree.dependOn(&run_cmd_binary_tree.step);
// Section: "Heap"
// Source File: "chapter_heap/heap.zig"
// Run Command: zig build run_heap
const exe_heap = b.addExecutable("heap", "chapter_heap/heap.zig");
exe_heap.addPackagePath("include", "include/include.zig");
exe_heap.setTarget(target);
exe_heap.setBuildMode(mode);
exe_heap.install();
const run_cmd_heap = exe_heap.run();
run_cmd_heap.step.dependOn(b.getInstallStep());
if (b.args) |args| run_cmd_heap.addArgs(args);
const run_step_heap = b.step("run_heap", "Run heap");
run_step_heap.dependOn(&run_cmd_heap.step);
// Section: "Linear Search" // Section: "Linear Search"
// Source File: "chapter_searching/linear_search.zig" // Source File: "chapter_searching/linear_search.zig"
// Run Command: zig build run_linear_search // Run Command: zig build run_linear_search

@ -0,0 +1,84 @@
// File: heap.zig
// Created Time: 2023-01-14
// Author: sjinzh (sjinzh@gmail.com)
const std = @import("std");
const inc = @import("include");
fn lessThan(context: void, a: i32, b: i32) std.math.Order {
_ = context;
return std.math.order(a, b);
}
fn greaterThan(context: void, a: i32, b: i32) std.math.Order {
return lessThan(context, a, b).invert();
}
fn testPush(comptime T: type, mem_allocator: std.mem.Allocator, heap_push: anytype, val: T) !void {
var heap = heap_push;
try heap.add(val); //
std.debug.print("\n元素 {} 入堆后\n", .{val});
try inc.PrintUtil.printHeap(T, mem_allocator, heap);
}
fn testPop(comptime T: type, mem_allocator: std.mem.Allocator, heap_pop: anytype) !void {
var val = heap_pop.remove(); //
std.debug.print("\n堆顶元素 {} 出堆后\n", .{val});
try inc.PrintUtil.printHeap(T, mem_allocator, heap_pop);
}
// Driver Code
pub fn main() !void {
//
var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer mem_arena.deinit();
const mem_allocator = mem_arena.allocator();
//
//
const PQlt = std.PriorityQueue(i32, void, lessThan);
var minHeap = PQlt.init(std.heap.page_allocator, {});
defer minHeap.deinit();
//
const PQgt = std.PriorityQueue(i32, void, greaterThan);
var maxHeap = PQgt.init(std.heap.page_allocator, {});
defer maxHeap.deinit();
std.debug.print("\n以下测试样例为大顶堆", .{});
//
try testPush(i32, mem_allocator, &maxHeap, 1);
try testPush(i32, mem_allocator, &maxHeap, 3);
try testPush(i32, mem_allocator, &maxHeap, 2);
try testPush(i32, mem_allocator, &maxHeap, 5);
try testPush(i32, mem_allocator, &maxHeap, 4);
//
var peek = maxHeap.peek().?;
std.debug.print("\n堆顶元素为 {}\n", .{peek});
//
try testPop(i32, mem_allocator, &maxHeap);
try testPop(i32, mem_allocator, &maxHeap);
try testPop(i32, mem_allocator, &maxHeap);
try testPop(i32, mem_allocator, &maxHeap);
try testPop(i32, mem_allocator, &maxHeap);
//
var size = maxHeap.len;
std.debug.print("\n堆元素数量为 {}\n", .{size});
//
var isEmpty = if (maxHeap.len == 0) true else false;
std.debug.print("\n堆是否为空 {}\n", .{isEmpty});
//
// O(n) O(nlogn)
try minHeap.addSlice(&[_]i32{ 1, 3, 2, 5, 4 });
std.debug.print("\n输入列表并建立小顶堆后\n", .{});
try inc.PrintUtil.printHeap(i32, mem_allocator, minHeap);
const getchar = try std.io.getStdIn().reader().readByte();
_ = getchar;
}

@ -28,32 +28,26 @@ pub fn arrToTree(comptime T: type, mem_allocator: std.mem.Allocator, list: []T)
if (list.len == 0) return null; if (list.len == 0) return null;
var root = try mem_allocator.create(TreeNode(T)); var root = try mem_allocator.create(TreeNode(T));
root.init(list[0]); root.init(list[0]);
var que = std.ArrayList(*TreeNode(T)).init(std.heap.page_allocator);
const TailQueue = std.TailQueue(?*TreeNode(T)); try que.append(root);
const TailQueueNode = std.TailQueue(?*TreeNode(T)).Node;
var que = TailQueue{};
var node_root = TailQueueNode{ .data = root };
que.append(&node_root);
var index: usize = 0; var index: usize = 0;
while (que.len > 0) { while (que.items.len > 0) {
var node = que.popFirst(); var node = que.orderedRemove(0);
index += 1; index += 1;
if (index >= list.len) break; if (index >= list.len) break;
if (index < list.len) { if (index < list.len) {
var tmp = try mem_allocator.create(TreeNode(T)); var tmp = try mem_allocator.create(TreeNode(T));
tmp.init(list[index]); tmp.init(list[index]);
node.?.data.?.left = tmp; node.left = tmp;
var a = TailQueueNode{ .data = node.?.data.?.left }; try que.append(node.left.?);
que.append(&a);
} }
index += 1; index += 1;
if (index >= list.len) break; if (index >= list.len) break;
if (index < list.len) { if (index < list.len) {
var tmp = try mem_allocator.create(TreeNode(T)); var tmp = try mem_allocator.create(TreeNode(T));
tmp.init(list[index]); tmp.init(list[index]);
node.?.data.?.right = tmp; node.right = tmp;
var a = TailQueueNode{ .data = node.?.data.?.right }; try que.append(node.right.?);
que.append(&a);
} }
} }
return root; return root;

Loading…
Cancel
Save