|
|
|
@ -30,15 +30,15 @@
|
|
|
|
|
|
|
|
|
|
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 $(row, col)$ ,选定矩阵中的某条主对角线,我们发现该对角线上所有格子的行索引减列索引都相等,**即对角线上所有格子的 $row - col$ 为恒定值**。
|
|
|
|
|
|
|
|
|
|
也就是说,如果两个格子满足 $row_1 - col_1 = row_2 - col_2$ ,则它们一定处在同一条主对角线上。利用该规律,我们可以借助下图所示的数组 `diag1` ,记录每条主对角线上是否有皇后。
|
|
|
|
|
也就是说,如果两个格子满足 $row_1 - col_1 = row_2 - col_2$ ,则它们一定处在同一条主对角线上。利用该规律,我们可以借助下图所示的数组 `diags1` ,记录每条主对角线上是否有皇后。
|
|
|
|
|
|
|
|
|
|
同理,**次对角线上的所有格子的 $row + col$ 是恒定值**。我们同样也可以借助数组 `diag2` 来处理次对角线约束。
|
|
|
|
|
同理,**次对角线上的所有格子的 $row + col$ 是恒定值**。我们同样也可以借助数组 `diags2` 来处理次对角线约束。
|
|
|
|
|
|
|
|
|
|
![处理列约束和对角线约束](n_queens_problem.assets/n_queens_cols_diagonals.png)
|
|
|
|
|
|
|
|
|
|
### 代码实现
|
|
|
|
|
|
|
|
|
|
请注意,$n$ 维方阵中 $row - col$ 的范围是 $[-n + 1, n - 1]$ ,$row + col$ 的范围是 $[0, 2n - 2]$ ,所以主对角线和次对角线的数量都为 $2n - 1$ ,即数组 `diag1` 和 `diag2` 的长度都为 $2n - 1$ 。
|
|
|
|
|
请注意,$n$ 维方阵中 $row - col$ 的范围是 $[-n + 1, n - 1]$ ,$row + col$ 的范围是 $[0, 2n - 2]$ ,所以主对角线和次对角线的数量都为 $2n - 1$ ,即数组 `diags1` 和 `diags2` 的长度都为 $2n - 1$ 。
|
|
|
|
|
|
|
|
|
|
```src
|
|
|
|
|
[file]{n_queens}-[class]{}-[func]{n_queens}
|
|
|
|
|