Merge pull request #29 from Reanon/feature/support-go-chapter-tree

Support go code in chapter-tree
pull/31/head
Yudong Jin 2 years ago committed by GitHub
commit 62c40fdf1b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,5 +1,5 @@
// File: binary_search_tree.go // File: binary_search_tree.go
// Created Time: 2022-11-25 // Created Time: 2022-11-26
// Author: Reanon (793584285@qq.com) // Author: Reanon (793584285@qq.com)
package chapter_tree package chapter_tree
@ -14,7 +14,166 @@ type BinarySearchTree struct {
} }
func NewBinarySearchTree(nums []int) *BinarySearchTree { func NewBinarySearchTree(nums []int) *BinarySearchTree {
// 排序数组 // sorting array
sort.Ints(nums) sort.Ints(nums)
return nil root := buildBinarySearchTree(nums, 0, len(nums)-1)
return &BinarySearchTree{
root: root,
}
}
// GetRoot Get the root node of binary search tree
func (bst *BinarySearchTree) GetRoot() *TreeNode {
return bst.root
}
// GetMin Get node with the min value
func (bst *BinarySearchTree) GetMin(node *TreeNode) *TreeNode {
if node == nil {
return node
}
// 循环访问左子结点,直到叶结点时为最小结点,跳出
for node.Left != nil {
node = node.Left
}
return node
}
// GetInorderNext Get node inorder next
func (bst *BinarySearchTree) GetInorderNext(node *TreeNode) *TreeNode {
if node == nil || node.Right == nil {
return node
}
node = node.Right
// 循环访问左子结点,直到叶结点时为最小结点,跳出
for node.Left != nil {
node = node.Left
}
return node
}
// Search node of binary search tree
func (bst *BinarySearchTree) Search(num int) *TreeNode {
node := bst.root
// 循环查找,越过叶结点后跳出
for node != nil {
if node.Val < num {
// 目标结点在 root 的右子树中
node = node.Right
} else if node.Val > num {
// 目标结点在 root 的左子树中
node = node.Left
} else {
// 找到目标结点,跳出循环
break
}
}
// 返回目标结点
return node
}
// Insert node of binary search tree
func (bst *BinarySearchTree) Insert(num int) *TreeNode {
cur := bst.root
// 若树为空,直接提前返回
if cur == nil {
return nil
}
// 待插入结点之前的结点位置
var prev *TreeNode = nil
// 循环查找,越过叶结点后跳出
for cur != nil {
if cur.Val == num {
return nil
}
prev = cur
if cur.Val < num {
cur = cur.Right
} else {
cur = cur.Left
}
}
// 插入结点
node := NewTreeNode(num)
if prev.Val < num {
prev.Right = node
} else {
prev.Left = node
}
return cur
}
// Remove node of binary search tree
func (bst *BinarySearchTree) Remove(num int) *TreeNode {
cur := bst.root
// 若树为空,直接提前返回
if cur == nil {
return nil
}
// 待删除结点之前的结点位置
var prev *TreeNode = nil
// 循环查找,越过叶结点后跳出
for cur != nil {
if cur.Val == num {
break
}
prev = cur
// 待删除结点在右子树中
if cur.Val < num {
cur = cur.Right
} else {
// 待删除结点在左子树中
cur = cur.Left
}
}
// 若无待删除结点,则直接返回
if cur == nil {
return nil
}
// 子结点数为 0 或 1
if cur.Left == nil || cur.Right == nil {
var child *TreeNode = nil
// 取出待删除结点的子结点
if cur.Left != nil {
child = cur.Left
} else {
child = cur.Right
}
// 将子结点替换为待删除结点
if prev.Left == cur {
prev.Left = child
} else {
prev.Right = child
}
} else { // 子结点数为 2
// 获取中序遍历中待删除结点 cur 的下一个结点
next := bst.GetInorderNext(cur)
temp := next.Val
// 递归删除结点 next
bst.Remove(next.Val)
// 将 next 的值复制给 cur
cur.Val = temp
}
// TODO: add error handler, don't return node
return cur
}
// buildBinarySearchTree Build a binary search tree from array.
func buildBinarySearchTree(nums []int, left, right int) *TreeNode {
if left > right {
return nil
}
// 将数组中间结点作为根结点
middle := left + (right-left)>>1
root := NewTreeNode(nums[middle])
// 递归构建左子树和右子树
root.Left = buildBinarySearchTree(nums, left, middle-1)
root.Right = buildBinarySearchTree(nums, middle+1, right)
return root
}
// Print binary search tree
func (bst *BinarySearchTree) Print() {
PrintTree(bst.root)
} }

@ -0,0 +1,41 @@
// File: binary_search_tree_test.go
// Created Time: 2022-11-26
// Author: Reanon (793584285@qq.com)
package chapter_tree
import "testing"
func TestBinarySearchTree(t *testing.T) {
nums := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
bst := NewBinarySearchTree(nums)
t.Log("初始化的二叉树为: ")
bst.Print()
// 获取根结点
node := bst.GetRoot()
t.Log("二叉树的根结点为: ", node.Val)
// 获取最小的结点
node = bst.GetMin(bst.GetRoot())
t.Log("二叉树的最小结点为: ", node.Val)
// 查找结点
node = bst.Search(5)
t.Log("查找到的结点对象为", node, ",结点值 = ", node.Val)
// 插入结点
node = bst.Insert(16)
t.Log("插入结点后 16 的二叉树为: ")
bst.Print()
// 删除结点
bst.Remove(1)
t.Log("删除结点 1 后的二叉树为: ")
bst.Print()
bst.Remove(2)
t.Log("删除结点 2 后的二叉树为: ")
bst.Print()
bst.Remove(4)
t.Log("删除结点 4 后的二叉树为: ")
bst.Print()
}

@ -0,0 +1,35 @@
// File: binary_tree_bfs.go
// Created Time: 2022-11-26
// Author: Reanon (793584285@qq.com)
package chapter_tree
import (
"container/list"
. "github.com/krahets/hello-algo/pkg"
)
// levelOrder Breadth First Search
func levelOrder(root *TreeNode) []int {
// Let container.list as queue
queue := list.New()
// 初始化队列,加入根结点
queue.PushBack(root)
// 初始化一个切片,用于保存遍历序列
nums := make([]int, 0)
for queue.Len() > 0 {
// poll
node := queue.Remove(queue.Front()).(*TreeNode)
// 保存结点
nums = append(nums, node.Val)
if node.Left != nil {
// 左子结点入队
queue.PushBack(node.Left)
}
if node.Right != nil {
// 右子结点入队
queue.PushBack(node.Right)
}
}
return nums
}

@ -0,0 +1,22 @@
// File: binary_tree_bfs_test.go
// Created Time: 2022-11-26
// Author: Reanon (793584285@qq.com)
package chapter_tree
import (
. "github.com/krahets/hello-algo/pkg"
"testing"
)
func TestLevelOrder(t *testing.T) {
/* 初始化二叉树 */
// 这里借助了一个从数组直接生成二叉树的函数
root := ArrayToTree([]int{1, 2, 3, 4, 5, 6, 7})
t.Log("初始化二叉树: ")
PrintTree(root)
// 层序遍历
nums := levelOrder(root)
t.Log("层序遍历的结点打印序列 = ", nums)
}

@ -0,0 +1,63 @@
// File: binary_tree_dfs.go
// Created Time: 2022-11-26
// Author: Reanon (793584285@qq.com)
package chapter_tree
import (
. "github.com/krahets/hello-algo/pkg"
)
// preOrder 前序遍历
func preOrder(root *TreeNode) (nums []int) {
var preOrderHelper func(node *TreeNode)
// 匿名函数
preOrderHelper = func(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:根结点 -> 左子树 -> 右子树
nums = append(nums, node.Val)
preOrderHelper(node.Left)
preOrderHelper(node.Right)
}
// 函数调用
preOrderHelper(root)
return
}
// inOrder 中序遍历
func inOrder(root *TreeNode) (nums []int) {
var inOrderHelper func(node *TreeNode)
// 匿名函数
inOrderHelper = func(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrderHelper(node.Left)
nums = append(nums, node.Val)
inOrderHelper(node.Right)
}
// 函数调用
inOrderHelper(root)
return
}
// postOrder 后序遍历
func postOrder(root *TreeNode) (nums []int) {
var postOrderHelper func(node *TreeNode)
// 匿名函数
postOrderHelper = func(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrderHelper(node.Left)
postOrderHelper(node.Right)
nums = append(nums, node.Val)
}
// 函数调用
postOrderHelper(root)
return
}

@ -0,0 +1,30 @@
// File: binary_tree_dfs_test.go
// Created Time: 2022-11-26
// Author: Reanon (793584285@qq.com)
package chapter_tree
import (
. "github.com/krahets/hello-algo/pkg"
"testing"
)
func TestPreInPostOrderTraversal(t *testing.T) {
/* 初始化二叉树 */
// 这里借助了一个从数组直接生成二叉树的函数
root := ArrayToTree([]int{1, 2, 3, 4, 5, 6, 7})
t.Log("初始化二叉树: ")
PrintTree(root)
// 前序遍历
nums := preOrder(root)
t.Log("前序遍历的结点打印序列 = ", nums)
// 中序遍历
nums = inOrder(root)
t.Log("中序遍历的结点打印序列 = ", nums)
// 后序遍历
nums = postOrder(root)
t.Log("后序遍历的结点打印序列 = ", nums)
}

@ -11,7 +11,7 @@ import (
func TestBinaryTree(t *testing.T) { func TestBinaryTree(t *testing.T) {
/* 初始化二叉树 */ /* 初始化二叉树 */
// 初始化 // 初始化
n1 := NewTreeNode(1) n1 := NewTreeNode(1)
n2 := NewTreeNode(2) n2 := NewTreeNode(2)
n3 := NewTreeNode(3) n3 := NewTreeNode(3)

@ -51,11 +51,11 @@ func ArrayToTree(arr []int) *TreeNode {
} }
// TreeToArray Serialize a binary tree to a list // TreeToArray Serialize a binary tree to a list
func TreeToArray(root *TreeNode) []int { func TreeToArray(root *TreeNode) []any {
if root == nil { if root == nil {
return []int{} return []any{}
} }
arr := make([]int, 16) arr := make([]any, 0)
queue := list.New() queue := list.New()
queue.PushBack(root) queue.PushBack(root)
for queue.Len() > 0 { for queue.Len() > 0 {
@ -65,7 +65,8 @@ func TreeToArray(root *TreeNode) []int {
queue.PushBack(node.Left) queue.PushBack(node.Left)
queue.PushBack(node.Right) queue.PushBack(node.Right)
} else { } else {
arr = append(arr, -1) // node don't exist.
arr = append(arr, nil)
} }
} }
return arr return arr
@ -73,19 +74,19 @@ func TreeToArray(root *TreeNode) []int {
// PrintTree Print a binary tree // PrintTree Print a binary tree
func PrintTree(root *TreeNode) { func PrintTree(root *TreeNode) {
PrintTreeHelper(root, nil, false) printTreeHelper(root, nil, false)
} }
// PrintTreeHelper Help to print a binary tree, hide more details // printTreeHelper Help to print a binary tree, hide more details
// This tree printer is borrowed from TECHIE DELIGHT // This tree printer is borrowed from TECHIE DELIGHT
// https://www.techiedelight.com/c-program-print-binary-tree/ // https://www.techiedelight.com/c-program-print-binary-tree/
func PrintTreeHelper(root *TreeNode, prev *trunk, isLeft bool) { func printTreeHelper(root *TreeNode, prev *trunk, isLeft bool) {
if root == nil { if root == nil {
return return
} }
prevStr := " " prevStr := " "
trunk := newTrunk(prev, prevStr) trunk := newTrunk(prev, prevStr)
PrintTreeHelper(root.Right, trunk, true) printTreeHelper(root.Right, trunk, true)
if prev == nil { if prev == nil {
trunk.str = "———" trunk.str = "———"
} else if isLeft { } else if isLeft {
@ -101,7 +102,7 @@ func PrintTreeHelper(root *TreeNode, prev *trunk, isLeft bool) {
prev.str = prevStr prev.str = prevStr
} }
trunk.str = " |" trunk.str = " |"
PrintTreeHelper(root.Left, trunk, false) printTreeHelper(root.Left, trunk, false)
} }
// trunk Help to Print tree structure // trunk Help to Print tree structure

@ -12,4 +12,7 @@ func TestTreeNode(t *testing.T) {
// print tree // print tree
PrintTree(node) PrintTree(node)
// tree to arr
t.Log(TreeToArray(node))
} }

@ -63,11 +63,11 @@ comments: true
给定一个待插入元素 `num` ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步: 给定一个待插入元素 `num` ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步:
1. **查找插入位置:** 与查找操作类似,我们从根结点出发,根据当前点值和 `num` 的大小关系循环向下搜索,直到越过叶结点(遍历到 $\text{null}$ )时跳出循环; 1. **查找插入位置:** 与查找操作类似,我们从根结点出发,根据当前点值和 `num` 的大小关系循环向下搜索,直到越过叶结点(遍历到 $\text{null}$ )时跳出循环;
2. **在该位置插入结点:** 初始化结点 `num` ,将该结点放到 $\text{null}$ 的位置 2. **在该位置插入结点:** 初始化结点 `num` ,将该结点放到 $\text{null}$ 的位置
二叉搜索树不允许存在重复点,否则将会违背其定义。因此若待插入结点在树中已经存在,则不执行插入,直接返回即可。 二叉搜索树不允许存在重复点,否则将会违背其定义。因此若待插入结点在树中已经存在,则不执行插入,直接返回即可。
![bst_insert](binary_search_tree.assets/bst_insert.png) ![bst_insert](binary_search_tree.assets/bst_insert.png)

@ -24,7 +24,7 @@ comments: true
<p align="center"> Fig. 子结点与子树 </p> <p align="center"> Fig. 子结点与子树 </p>
需要注意,父结点、子结点、子树是可以向下递推的。例如,如果将上图的「结点 2」看作父结点那么其左子点和右子结点分别为「结点 4」和「结点 5」左子树和右子树分别为「结点 4 以下的树」和「结点 5 以下的树」。 需要注意,父结点、子结点、子树是可以向下递推的。例如,如果将上图的「结点 2」看作父结点那么其左子点和右子结点分别为「结点 4」和「结点 5」左子树和右子树分别为「结点 4 以下的树」和「结点 5 以下的树」。
## 二叉树常见术语 ## 二叉树常见术语

Loading…
Cancel
Save